11,495 research outputs found

    Weighted distances in scale-free preferential attachment models

    Full text link
    We study three preferential attachment models where the parameters are such that the asymptotic degree distribution has infinite variance. Every edge is equipped with a non-negative i.i.d. weight. We study the weighted distance between two vertices chosen uniformly at random, the typical weighted distance, and the number of edges on this path, the typical hopcount. We prove that there are precisely two universality classes of weight distributions, called the explosive and conservative class. In the explosive class, we show that the typical weighted distance converges in distribution to the sum of two i.i.d. finite random variables. In the conservative class, we prove that the typical weighted distance tends to infinity, and we give an explicit expression for the main growth term, as well as for the hopcount. Under a mild assumption on the weight distribution the fluctuations around the main term are tight.Comment: Revised version, results are unchanged. 30 pages, 1 figure. To appear in Random Structures and Algorithm

    A preferential attachment model with random initial degrees

    Get PDF
    In this paper, a random graph process G(t)t1{G(t)}_{t\geq 1} is studied and its degree sequence is analyzed. Let (Wt)t1(W_t)_{t\geq 1} be an i.i.d. sequence. The graph process is defined so that, at each integer time tt, a new vertex, with WtW_t edges attached to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on G(t1)G(t-1), the probability that a given edge is connected to vertex i is proportional to di(t1)+δd_i(t-1)+\delta, where di(t1)d_i(t-1) is the degree of vertex ii at time t1t-1, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent τ=min{τW,τP}\tau=\min\{\tau_{W}, \tau_{P}\}, where τW\tau_{W} is the power-law exponent of the initial degrees (Wt)t1(W_t)_{t\geq 1} and τP\tau_{P} the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.Comment: In the published form of the paper, the proof of Proposition 2.1 is incomplete. This version contains the complete proo
    corecore