We study three preferential attachment models where the parameters are such
that the asymptotic degree distribution has infinite variance. Every edge is
equipped with a non-negative i.i.d. weight. We study the weighted distance
between two vertices chosen uniformly at random, the typical weighted distance,
and the number of edges on this path, the typical hopcount. We prove that there
are precisely two universality classes of weight distributions, called the
explosive and conservative class. In the explosive class, we show that the
typical weighted distance converges in distribution to the sum of two i.i.d.
finite random variables. In the conservative class, we prove that the typical
weighted distance tends to infinity, and we give an explicit expression for the
main growth term, as well as for the hopcount. Under a mild assumption on the
weight distribution the fluctuations around the main term are tight.Comment: Revised version, results are unchanged. 30 pages, 1 figure. To appear
in Random Structures and Algorithm