3,883 research outputs found

    Probabilistic Reduced-Order Modeling for Stochastic Partial Differential Equations

    Full text link
    We discuss a Bayesian formulation to coarse-graining (CG) of PDEs where the coefficients (e.g. material parameters) exhibit random, fine scale variability. The direct solution to such problems requires grids that are small enough to resolve this fine scale variability which unavoidably requires the repeated solution of very large systems of algebraic equations. We establish a physically inspired, data-driven coarse-grained model which learns a low- dimensional set of microstructural features that are predictive of the fine-grained model (FG) response. Once learned, those features provide a sharp distribution over the coarse scale effec- tive coefficients of the PDE that are most suitable for prediction of the fine scale model output. This ultimately allows to replace the computationally expensive FG by a generative proba- bilistic model based on evaluating the much cheaper CG several times. Sparsity enforcing pri- ors further increase predictive efficiency and reveal microstructural features that are important in predicting the FG response. Moreover, the model yields probabilistic rather than single-point predictions, which enables the quantification of the unavoidable epistemic uncertainty that is present due to the information loss that occurs during the coarse-graining process

    Coarse-Graining Auto-Encoders for Molecular Dynamics

    Full text link
    Molecular dynamics simulations provide theoretical insight into the microscopic behavior of materials in condensed phase and, as a predictive tool, enable computational design of new compounds. However, because of the large temporal and spatial scales involved in thermodynamic and kinetic phenomena in materials, atomistic simulations are often computationally unfeasible. Coarse-graining methods allow simulating larger systems, by reducing the dimensionality of the simulation, and propagating longer timesteps, by averaging out fast motions. Coarse-graining involves two coupled learning problems; defining the mapping from an all-atom to a reduced representation, and the parametrization of a Hamiltonian over coarse-grained coordinates. Multiple statistical mechanics approaches have addressed the latter, but the former is generally a hand-tuned process based on chemical intuition. Here we present Autograin, an optimization framework based on auto-encoders to learn both tasks simultaneously. Autograin is trained to learn the optimal mapping between all-atom and reduced representation, using the reconstruction loss to facilitate the learning of coarse-grained variables. In addition, a force-matching method is applied to variationally determine the coarse-grained potential energy function. This procedure is tested on a number of model systems including single-molecule and bulk-phase periodic simulations.Comment: 8 pages, 6 figure

    Persistent accelerations disentangle Lagrangian turbulence

    Full text link
    Particles in turbulence frequently encounter extreme accelerations between extended periods of quiescence. The occurrence of extreme events is closely related to the intermittent spatial distribution of intense flow structures such as vorticity filaments. This mixed history of flow conditions leads to very complex particle statistics with a pronounced scale dependence, which presents one of the major challenges on the way to a non-equilibrium statistical mechanics of turbulence. Here, we introduce the notion of persistent Lagrangian acceleration, quantified by the squared particle acceleration coarse-grained over a viscous time scale. Conditioning Lagrangian particle data from simulations on this coarse-grained acceleration, we find remarkably simple, close-to-Gaussian statistics for a range of Reynolds numbers. This opens the possibility to decompose the complex particle statistics into much simpler sub-ensembles. Based on this observation, we develop a comprehensive theoretical framework for Lagrangian single-particle statistics that captures the acceleration, velocity increments as well as single-particle dispersion

    A First Principle Approach to Rescale the Dynamics of Simulated Coarse-Grained Macromolecular Liquids

    Full text link
    We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale simulations of coarse-grained polymer melts (I. Y. Lyubimov et al. J. Chem. Phys. \textbf{132}, 11876, 2010). Starting from the first-principle Liouville equation and applying the Mori-Zwanzig projection operator technique, we derive the Generalized Langevin Equations (GLE) for the coarse-grained representations of the liquid. The chosen slow variables in the projection operators define the length scale of coarse graining. Each polymer is represented at two levels of coarse-graining: monomeric as a bead-and-spring model and molecular as a soft-colloid. In the long-time regime where the center-of-mass follows Brownian motion and the internal dynamics is completely relaxed, the two descriptions must be equivalent. By enforcing this formal relation we derive from the GLEs the analytical rescaling factors to be applied to dynamical data in the coarse-grained representation to recover the monomeric description. Change in entropy and change in friction are the two corrections to be accounted for to compensate the effects of coarse-graining on the polymer dynamics. The solution of the memory functions in the coarse-grained representations provides the dynamical rescaling of the friction coefficient. The calculation of the internal degrees of freedom provides the correction of the change in entropy due to coarse-graining. The resulting rescaling formalism is a function of the coarse-grained model and thermodynamic parameters of the system simulated. The rescaled dynamics obtained from mesoscale simulations of polyethylene, represented as soft colloidal particles, by applying our rescaling approach shows a good agreement with data of translational diffusion measured experimentally and from simulations. The proposed method is used to predict self-diffusion coefficients of new polyethylene samples.Comment: 21 pages, 6 figures, 6 tables. Submitted to Phys. Rev.

    Asymptotically safe f(R)-gravity coupled to matter I: the polynomial case

    Full text link
    We use the functional renormalization group equation for the effective average action to study the non-Gaussian renormalization group fixed points (NGFPs) arising within the framework of f(R)-gravity minimally coupled to an arbitrary number of scalar, Dirac, and vector fields. Based on this setting we provide comprehensible estimates which gravity-matter systems give rise to NGFPs suitable for rendering the theory asymptotically safe. The analysis employs an exponential split of the metric fluctuations and retains a 7-parameter family of coarse-graining operators allowing the inclusion of non-trivial endomorphisms in the regularization procedure. For vanishing endomorphisms, it is established that gravity coupled to the matter content of the standard model of particle physics and many beyond the standard model extensions exhibit NGFPs whose properties are strikingly similar to the case of pure gravity: there are two UV-relevant directions and the position and critical exponents converge rapidly when higher powers of the scalar curvature are included. Conversely, none of the phenomenologically interesting gravity-matter systems exhibits a stable NGFP when a Type II coarse graining operator is employed. Our analysis resolves this tension by demonstrating that the NGFPs seen in the two settings belong to different universality classes.Comment: 49 pages, 5 figure
    • …
    corecore