36 research outputs found

    Covert Bits Through Queues

    Full text link
    We consider covert communication using a queuing timing channel in the presence of a warden. The covert message is encoded using the inter-arrival times of the packets, and the legitimate receiver and the warden observe the inter-departure times of the packets from their respective queues. The transmitter and the legitimate receiver also share a secret key to facilitate covert communication. We propose achievable schemes that obtain non-zero covert rate for both exponential and general queues when a sufficiently high rate secret key is available. This is in contrast to other channel models such as the Gaussian channel or the discrete memoryless channel where only O(n)\mathcal{O}(\sqrt{n}) covert bits can be sent over nn channel uses, yielding a zero covert rate.Comment: To appear at IEEE CNS, October 201

    Suppressing the Oblivious RAM timing channel while making information leakage and program efficiency trade-offs

    Get PDF
    Oblivious RAM (ORAM) is an established cryptographic technique to hide a program's address pattern to an untrusted storage system. More recently, ORAM schemes have been proposed to replace conventional memory controllers in secure processor settings to protect against information leakage in external memory and the processor I/O bus. A serious problem in current secure processor ORAM proposals is that they don't obfuscate when ORAM accesses are made, or do so in a very conservative manner. Since secure processors make ORAM accesses on last-level cache misses, ORAM access timing strongly correlates to program access pattern (e.g., locality). This brings ORAM's purpose in secure processors into question. This paper makes two contributions. First, we show how a secure processor can bound ORAM timing channel leakage to a user-controllable leakage limit. The secure processor is allowed to dynamically optimize ORAM access rate for power/performance, subject to the constraint that the leakage limit is not violated. Second, we show how changing the leakage limit impacts program efficiency. We present a dynamic scheme that leaks at most 32 bits through the ORAM timing channel and introduces only 20% performance overhead and 12% power overhead relative to a baseline ORAM that has no timing channel protection. By reducing leakage to 16 bits, our scheme degrades in performance by 5% but gains in power efficiency by 3%. We show that a static (zero leakage) scheme imposes a 34% power overhead for equivalent performance (or a 30% performance overhead for equivalent power) relative to our dynamic scheme.United States. Dept. of Defense (National Defense Science and Engineering Graduate (NDSEG) Fellowship)United States. Defense Advanced Research Projects Agency. Clean-slate Design of Resilient, Adaptive, Secure Hosts (CRASH) Program (Contract N66001-10-2-4089

    Cryptographically Secure Information Flow Control on Key-Value Stores

    Full text link
    We present Clio, an information flow control (IFC) system that transparently incorporates cryptography to enforce confidentiality and integrity policies on untrusted storage. Clio insulates developers from explicitly manipulating keys and cryptographic primitives by leveraging the policy language of the IFC system to automatically use the appropriate keys and correct cryptographic operations. We prove that Clio is secure with a novel proof technique that is based on a proof style from cryptography together with standard programming languages results. We present a prototype Clio implementation and a case study that demonstrates Clio's practicality.Comment: Full version of conference paper appearing in CCS 201

    A Verified Information-Flow Architecture

    Get PDF
    SAFE is a clean-slate design for a highly secure computer system, with pervasive mechanisms for tracking and limiting information flows. At the lowest level, the SAFE hardware supports fine-grained programmable tags, with efficient and flexible propagation and combination of tags as instructions are executed. The operating system virtualizes these generic facilities to present an information-flow abstract machine that allows user programs to label sensitive data with rich confidentiality policies. We present a formal, machine-checked model of the key hardware and software mechanisms used to dynamically control information flow in SAFE and an end-to-end proof of noninterference for this model. We use a refinement proof methodology to propagate the noninterference property of the abstract machine down to the concrete machine level. We use an intermediate layer in the refinement chain that factors out the details of the information-flow control policy and devise a code generator for compiling such information-flow policies into low-level monitor code. Finally, we verify the correctness of this generator using a dedicated Hoare logic that abstracts from low-level machine instructions into a reusable set of verified structured code generators
    corecore