3 research outputs found

    Robust and long-term monocular teach-and-repeat navigation using a single-experience map

    Get PDF
    This paper presents a robust monocular visual teach-and-repeat (VT&R) navigation system for long-term operation in outdoor environments. The approach leverages deep-learned descriptors to deal with the high illumination variance of the real world. In particular, a tailored self-supervised descriptor, DarkPoint, is proposed for autonomous navigation in outdoor environments. We seamlessly integrate the localisation with control, in which proportional–integral control is used to eliminate the visual error with the pitfall of the unknown depth. Consequently, our approach achieves day-to-night navigation using a single-experience map and is able to repeat complex and fast manoeuvres. To verify our approach, we performed a vast array of navigation experiments in various outdoor environments, where both navigation accuracy and robustness of the proposed system are investigated. The experimental results show that our approach is superior to the baseline method with regards to accuracy and robustness

    Predictive and adaptive maps for long-term visual navigation in changing environments

    No full text
    In this paper, we compare different map management techniques for long-term visual navigation in changing environments. In this scenario, the navigation system needs to continuously update and refine its feature map in order to adapt to the environment appearance change. To achieve reliable long-term navigation, the map management techniques have to (i) select features useful for the current navigation task, (ii) remove features that are obsolete, (iii) and add new features from the current camera view to the map. We propose several map management strategies and evaluate their performance with regard to the robot localisation accuracy in long-term teach-and-repeat navigation. Our experiments, performed over three months, indicate that strategies which model cyclic changes of the environment appearance and predict which features are going to be visible at a particular time and location, outperform strategies which do not explicitly model the temporal evolution of the changes.</p
    corecore