41 research outputs found

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis

    Advancements in Medical Imaging and Diagnostics with Deep Learning Technologies

    Get PDF
    Medical imaging has long been a cornerstone in diagnostic medicine, providing clinicians with a non-invasive method to visualize internal structures and processes. However, traditional imaging techniques have faced challenges in resolution, safety concerns related to radiation exposure, and the need for invasive procedures for clearer visualization. With the advent of deep learning technologies, significant advancements have been made in the field of medical imaging, addressing many of these challenges and introducing new capabilities. This research seeks into the integration of deep learning in enhancing image resolution, leading to clearer and more detailed visualizations. Furthermore, the ability to reconstruct three-dimensional images from traditional two-dimensional scans offers a more comprehensive view of the area under examination. Automated analysis powered by deep learning algorithms not only speeds up the diagnostic process but also detects anomalies that might be overlooked by the human eye. Predictive analysis, based on these enhanced images, can forecast the likelihood of diseases, and real-time analysis during surgeries ensures immediate feedback, enhancing the precision of medical procedures. Safety in medical imaging has also seen improvements. Techniques powered by deep learning require reduced radiation, minimizing risks to patients. Additionally, the enhanced clarity and detail in images reduce the need for invasive procedures, further ensuring patient safety. The integration of imaging data with Electronic Health Records (EHR) has paved the way for personalized care recommendations, tailoring treatments based on individual patient history and current diagnostics. Lastly, the role of deep learning extends to medical education, where it aids in creating realistic simulations and models, equipping medical professionals with better training tools

    Automated detection of Alzheimer disease using MRI images and deep neural networks- A review

    Full text link
    Early detection of Alzheimer disease is crucial for deploying interventions and slowing the disease progression. A lot of machine learning and deep learning algorithms have been explored in the past decade with the aim of building an automated detection for Alzheimer. Advancements in data augmentation techniques and advanced deep learning architectures have opened up new frontiers in this field, and research is moving at a rapid speed. Hence, the purpose of this survey is to provide an overview of recent research on deep learning models for Alzheimer disease diagnosis. In addition to categorizing the numerous data sources, neural network architectures, and commonly used assessment measures, we also classify implementation and reproducibility. Our objective is to assist interested researchers in keeping up with the newest developments and in reproducing earlier investigations as benchmarks. In addition, we also indicate future research directions for this topic.Comment: 22 Pages, 5 Figures, 7 Table

    Advancing Precision Medicine: Unveiling Disease Trajectories, Decoding Biomarkers, and Tailoring Individual Treatments

    Get PDF
    Chronic diseases are not only prevalent but also exert a considerable strain on the healthcare system, individuals, and communities. Nearly half of all Americans suffer from at least one chronic disease, which is still growing. The development of machine learning has brought new directions to chronic disease analysis. Many data scientists have devoted themselves to understanding how a disease progresses over time, which can lead to better patient management, identification of disease stages, and targeted interventions. However, due to the slow progression of chronic disease, symptoms are barely noticed until the disease is advanced, challenging early detection. Meanwhile, chronic diseases often have diverse underlying causes and can manifest differently among patients. Besides the external factors, the development of chronic disease is also influenced by internal signals. The DNA sequence-level differences have been proven responsible for constant predisposition to chronic diseases. Given these challenges, data must be analyzed at various scales, ranging from single nucleotide polymorphisms (SNPs) to individuals and populations, to better understand disease mechanisms and provide precision medicine. Therefore, this research aimed to develop an automated pipeline from building predictive models and estimating individual treatment effects based on the structured data of general electronic health records (EHRs) to identifying genetic variations (e.g., SNPs) associated with diseases to unravel the genetic underpinnings of chronic diseases. First, we used structured EHRs to uncover chronic disease progression patterns and assess the dynamic contribution of clinical features. In this step, we employed causal inference methods (constraint-based and functional causal models) for feature selection and utilized Markov chains, attention long short-term memory (LSTM), and Gaussian process (GP). SHapley Additive exPlanations (SHAPs) and local interpretable model-agnostic explanations (LIMEs) further extended the work to identify important clinical features. Next, I developed a novel counterfactual-based method to predict individual treatment effects (ITE) from observational data. To discern a “balanced” representation so that treated and control distributions look similar, we disentangled the doctor’s preference from the covariance and rebuilt the representation of the treated and control groups. We use integral probability metrics to measure distances between distributions. The expected ITE estimation error of a representation was the sum of the standard generalization error of that representation and the distance between the distributions induced. Finally, we performed genome-wide association studies (GWAS) based on the stage information we extracted from our unsupervised disease progression model to identify the biomarkers and explore the genetic correction between the disease and its phenotypes

    Alzheimers Disease Diagnosis using Machine Learning: A Review

    Full text link
    Alzheimers Disease AD is an acute neuro disease that degenerates the brain cells and thus leads to memory loss progressively. It is a fatal brain disease that mostly affects the elderly. It steers the decline of cognitive and biological functions of the brain and shrinks the brain successively, which in turn is known as Atrophy. For an accurate diagnosis of Alzheimers disease, cutting edge methods like machine learning are essential. Recently, machine learning has gained a lot of attention and popularity in the medical industry. As the illness progresses, those with Alzheimers have a far more difficult time doing even the most basic tasks, and in the worst case, their brain completely stops functioning. A persons likelihood of having early-stage Alzheimers disease may be determined using the ML method. In this analysis, papers on Alzheimers disease diagnosis based on deep learning techniques and reinforcement learning between 2008 and 2023 found in google scholar were studied. Sixty relevant papers obtained after the search was considered for this study. These papers were analysed based on the biomarkers of AD and the machine-learning techniques used. The analysis shows that deep learning methods have an immense ability to extract features and classify AD with good accuracy. The DRL methods have not been used much in the field of image processing. The comparison results of deep learning and reinforcement learning illustrate that the scope of Deep Reinforcement Learning DRL in dementia detection needs to be explored.Comment: 10 pages and 3 figure

    Biomedical Data Classification with Improvised Deep Learning Architectures

    Get PDF
    With the rise of very powerful hardware and evolution of deep learning architectures, healthcare data analysis and its applications have been drastically transformed. These transformations mainly aim to aid a healthcare personnel with diagnosis and prognosis of a disease or abnormality at any given point of healthcare routine workflow. For instance, many of the cancer metastases detection depends on pathological tissue procedures and pathologist reviews. The reports of severity classification vary amongst different pathologist, which then leads to different treatment options for a patient. This labor-intensive work can lead to errors or mistreatments resulting in high cost of healthcare. With the help of machine learning and deep learning modules, some of these traditional diagnosis techniques can be improved and aid a doctor in decision making with an unbiased view. Some of such modules can help reduce the cost, shortage of an expertise, and time in identifying the disease. However, there are many other datapoints that are available with medical images, such as omics data, biomarker calculations, patient demographics and history. All these datapoints can enhance disease classification or prediction of progression with the help of machine learning/deep learning modules. However, it is very difficult to find a comprehensive dataset with all different modalities and features in healthcare setting due to privacy regulations. Hence in this thesis, we explore both medical imaging data with clinical datapoints as well as genomics datasets separately for classification tasks using combinational deep learning architectures. We use deep neural networks with 3D volumetric structural magnetic resonance images of Alzheimer Disease dataset for classification of disease. A separate study is implemented to understand classification based on clinical datapoints achieved by machine learning algorithms. For bioinformatics applications, sequence classification task is a crucial step for many metagenomics applications, however, requires a lot of preprocessing that requires sequence assembly or sequence alignment before making use of raw whole genome sequencing data, hence time consuming especially in bacterial taxonomy classification. There are only a few approaches for sequence classification tasks that mainly involve some convolutions and deep neural network. A novel method is developed using an intrinsic nature of recurrent neural networks for 16s rRNA sequence classification which can be adapted to utilize read sequences directly. For this classification task, the accuracy is improved using optimization techniques with a hybrid neural network

    The Quality Application of Deep Learning in Clinical Outcome Predictions Using Electronic Health Record Data: A Systematic Review

    Get PDF
    Introduction: Electronic Health Record (EHR) is a significant source of medical data that can be used to develop predictive modelling with therapeutically useful outcomes. Predictive modelling using EHR data has been increasingly utilized in healthcare, achieving outstanding performance and improving healthcare outcomes. Objectives: The main goal of this review study is to examine different deep learning approaches and techniques used to EHR data processing. Methods: To find possibly pertinent articles that have used deep learning on EHR data, the PubMed database was searched. Using EHR data, we assessed and summarized deep learning performance in a number of clinical applications that focus on making specific predictions about clinical outcomes, and we compared the outcomes with those of conventional machine learning models. Results: For this study, a total of 57 papers were chosen. There have been five identified clinical outcome predictions: illness (n=33), intervention (n=6), mortality (n=5), Hospital readmission (n=7), and duration of stay (n=1). The majority of research (39 out of 57) used structured EHR data. RNNs were used as deep learning models the most frequently (LSTM: 17 studies, GRU: 6 research). The analysis shows that deep learning models have excelled when applied to a variety of clinical outcome predictions. While deep learning's application to EHR data has advanced rapidly, it's crucial that these models remain reliable, offering critical insights to assist clinicians in making informed decision. Conclusions: The findings demonstrate that deep learning can outperform classic machine learning techniques since it has the advantage of utilizing extensive and sophisticated datasets, such as longitudinal data seen in EHR. We think that deep learning will keep expanding because it has been quite successful in enhancing healthcare outcomes utilizing EHR data

    AI and Non AI Assessments for Dementia

    Full text link
    Current progress in the artificial intelligence domain has led to the development of various types of AI-powered dementia assessments, which can be employed to identify patients at the early stage of dementia. It can revolutionize the dementia care settings. It is essential that the medical community be aware of various AI assessments and choose them considering their degrees of validity, efficiency, practicality, reliability, and accuracy concerning the early identification of patients with dementia (PwD). On the other hand, AI developers should be informed about various non-AI assessments as well as recently developed AI assessments. Thus, this paper, which can be readable by both clinicians and AI engineers, fills the gap in the literature in explaining the existing solutions for the recognition of dementia to clinicians, as well as the techniques used and the most widespread dementia datasets to AI engineers. It follows a review of papers on AI and non-AI assessments for dementia to provide valuable information about various dementia assessments for both the AI and medical communities. The discussion and conclusion highlight the most prominent research directions and the maturity of existing solutions.Comment: 49 page

    Artificial Intelligence in Medicine: A New Way to Diagnose and Treat Disease

    Get PDF
    Artificial intelligence (AI) has immense potential to transform medicine by improving diagnostic accuracy and enabling personalized treatments. This paper explores how AI systems analyze medical images, lab tests, genetic data, and patient histories to detect disease earlier and guide therapy selection. Though still an emerging field, impressive results demonstrate AI can surpass human clinicians on diagnostic tasks. For example, an AI system detected breast cancer from mammograms more accurately than expert radiologists. In ophthalmology, AI outperformed ophthalmologists in diagnosing diabetic retinopathy. By finding subtle patterns in complex datasets, AI promises to catch diseases like cancer in early, more treatable stages. Beyond diagnosis, AI can identify optimal treatments for individual patients based on their genetic makeup and lifestyle factors. Researchers are also using AI to design new medications. While AI offers many benefits, challenges remain regarding clinician displacement, legal liability, data privacy, and the "black box" nature of AI reasoning. More research is needed, but it is clear that AI will fundamentally alter medical practice. AI empowers clinicians to provide earlier, more precise diagnoses and tailored therapies for patients. Though it will not replace doctors, by automating routine tasks and uncovering hidden insights, AI can free physicians to focus on holistic care. The future of medicine lies in humans and smart machines working together
    corecore