625,168 research outputs found
DeepCare: A Deep Dynamic Memory Model for Predictive Medicine
Personalized predictive medicine necessitates the modeling of patient illness
and care processes, which inherently have long-term temporal dependencies.
Healthcare observations, recorded in electronic medical records, are episodic
and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural
network that reads medical records, stores previous illness history, infers
current illness states and predicts future medical outcomes. At the data level,
DeepCare represents care episodes as vectors in space, models patient health
state trajectories through explicit memory of historical records. Built on Long
Short-Term Memory (LSTM), DeepCare introduces time parameterizations to handle
irregular timed events by moderating the forgetting and consolidation of memory
cells. DeepCare also incorporates medical interventions that change the course
of illness and shape future medical risk. Moving up to the health state level,
historical and present health states are then aggregated through multiscale
temporal pooling, before passing through a neural network that estimates future
outcomes. We demonstrate the efficacy of DeepCare for disease progression
modeling, intervention recommendation, and future risk prediction. On two
important cohorts with heavy social and economic burden -- diabetes and mental
health -- the results show improved modeling and risk prediction accuracy.Comment: Accepted at JBI under the new name: "Predicting healthcare
trajectories from medical records: A deep learning approach
Mercury: using the QuPreSS reference model to evaluate predictive services
Nowadays, lots of service providers offer predictive services that show in advance a condition or occurrence about the future. As a consequence, it becomes necessary for service customers to select the predictive service that best satisfies their needs. The QuPreSS reference model provides a standard solution for the selection of predictive services based on the quality of their predictions. QuPreSS has been designed to be applicable in any predictive domain (e.g., weather forecasting, economics, and medicine). This paper presents Mercury, a tool based on the QuPreSS reference model and customized to the weather forecast domain. Mercury measures weather predictive services' quality, and automates the context-dependent selection of the most accurate predictive service to satisfy a customer query. To do so, candidate predictive services are monitored so that their predictions can be eventually compared to real observations obtained from a trusted source. Mercury is a proof-of-concept of QuPreSS that aims to show that the selection of predictive services can be driven by the quality of their predictions. Throughout the paper, we show how Mercury was built from the QuPreSS reference model and how it can be installed and used.Peer ReviewedPostprint (author's final draft
EPMA position paper in cancer:current overview and future perspectives
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision
Conditional Screening for Ultra-high Dimensional Covariates with Survival Outcomes
Identifying important biomarkers that are predictive for cancer patients'
prognosis is key in gaining better insights into the biological influences on
the disease and has become a critical component of precision medicine. The
emergence of large-scale biomedical survival studies, which typically involve
excessive number of biomarkers, has brought high demand in designing efficient
screening tools for selecting predictive biomarkers. The vast amount of
biomarkers defies any existing variable selection methods via regularization.
The recently developed variable screening methods, though powerful in many
practical setting, fail to incorporate prior information on the importance of
each biomarker and are less powerful in detecting marginally weak while jointly
important signals. We propose a new conditional screening method for survival
outcome data by computing the marginal contribution of each biomarker given
priorly known biological information. This is based on the premise that some
biomarkers are known to be associated with disease outcomes a priori. Our
method possesses sure screening properties and a vanishing false selection
rate. The utility of the proposal is further confirmed with extensive
simulation studies and analysis of a Diffuse large B-cell lymphoma (DLBCL)
dataset.Comment: 34 pages, 3 figure
Children with 5′-end NF1 gene mutations are more likely to have glioma
Objective:To ascertain the relationship between the germline NF1 gene mutation and glioma development in patients with neurofibromatosis type 1 (NF1).Methods:The relationship between the type and location of the germline NF1 mutation and the presence of a glioma was analyzed in 37 participants with NF1 from one institution (Washington University School of Medicine [WUSM]) with a clinical diagnosis of NF1. Odds ratios (ORs) were calculated using both unadjusted and weighted analyses of this data set in combination with 4 previously published data sets.Results:While no statistical significance was observed between the location and type of the NF1 mutation and glioma in the WUSM cohort, power calculations revealed that a sample size of 307 participants would be required to determine the predictive value of the position or type of the NF1 gene mutation. Combining our data set with 4 previously published data sets (n = 310), children with glioma were found to be more likely to harbor 5′-end gene mutations (OR = 2; p = 0.006). Moreover, while not clinically predictive due to insufficient sensitivity and specificity, this association with glioma was stronger for participants with 5′-end truncating (OR = 2.32; p = 0.005) or 5′-end nonsense (OR = 3.93; p = 0.005) mutations relative to those without glioma.Conclusions:Individuals with NF1 and glioma are more likely to harbor nonsense mutations in the 5′ end of the NF1 gene, suggesting that the NF1 mutation may be one predictive factor for glioma in this at-risk population.</jats:sec
Predictive value of testing for multiple genetic variants in multifactorial
Multifactorial diseases such as type 2 diabetes, osteoporosis, and cardiovascular disease are caused by a
complex interplay of many genetic and nongenetic factors, each of which conveys a minor increase in the risk
of disease. Unraveling the genetic origins of these diseases is expected to lead to individualized medicine, in
which the prevention and treatment strategies are personalized on the basis of the results of predictive genetic
tests. This great optimism is counterbalanced by concerns about the ethical, legal, and social implications of
genomic medicine, such as the protection of privacy and autonomy, stigmatization, discrimination, and the
psychological burden of genetic testing. These concerns are translated from genetic testing in monogenic
disorders, but this translation may not be appropriate. Multiple genetic testing (genomic profiling) has
essential differences from genetic testing in monogenic disorders. The differences lie in the lower predictive
value of the test results, the pleiotropic effects of susceptibility genes, and the low inheritance of genomic
profiles. For these reasons, genomic profiling may be more similar to nongenetic tests than to predictive tests
for monogenic diseases. Therefore, ethical, legal, and social issues that apply to predictive genetic testing for
monogenic diseases may not be relevant for the prediction of multifactorial disorders in genomic medicine
Quantification and expert evaluation of evidence for chemopredictive biomarkers to personalize cancer treatment.
Predictive biomarkers have the potential to facilitate cancer precision medicine by guiding the optimal choice of therapies for patients. However, clinicians are faced with an enormous volume of often-contradictory evidence regarding the therapeutic context of chemopredictive biomarkers.We extensively surveyed public literature to systematically review the predictive effect of 7 biomarkers claimed to predict response to various chemotherapy drugs: ERCC1-platinums, RRM1-gemcitabine, TYMS-5-fluorouracil/Capecitabine, TUBB3-taxanes, MGMT-temozolomide, TOP1-irinotecan/topotecan, and TOP2A-anthracyclines. We focused on studies that investigated changes in gene or protein expression as predictors of drug sensitivity or resistance. We considered an evidence framework that ranked studies from high level I evidence for randomized controlled trials to low level IV evidence for pre-clinical studies and patient case studies.We found that further in-depth analysis will be required to explore methodological issues, inconsistencies between studies, and tumor specific effects present even within high evidence level studies. Some of these nuances will lend themselves to automation, others will require manual curation. However, the comprehensive cataloging and analysis of dispersed public data utilizing an evidence framework provides a high level perspective on clinical actionability of these protein biomarkers. This framework and perspective will ultimately facilitate clinical trial design as well as therapeutic decision-making for individual patients
- …
