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Conditional Screening for Ultra-high
Dimensional Covariates with Survival

Outcomes

Hyokyoung Grace Hong, Jian Kang, and Yi Li

Abstract

Identifying important biomarkers that are predictive for cancer patients’ progno-
sis is key in gaining better insights into the biological influences on the disease
and has become a critical component of precision medicine. The emergence of
large-scale biomedical survival studies, which typically involve excessive number
of biomarkers, has brought high demand in designing efficient screening tools for
selecting predictive biomarkers. The vast amount of biomarkers defies any exist-
ing variable selection methods via regularization. The recently developed variable
screening methods, though powerful in many practical setting, fail to incorporate
prior information on the importance of each biomarker and are less powerful in
detecting marginally weak while jointly important signals. We propose a new con-
ditional screening method for survival outcome data by computing the marginal
contribution of each biomarker given priorly known biological information. This
is based on the premise that some biomarkers are known to be associated with
disease outcomes a priori. Our method possesses sure screening properties and
a vanishing false selection rate. The utility of the proposal is further confirmed
with extensive simulation studies and analysis of a Diffuse large B-cell lymphoma
(DLBCL) dataset.
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1 Introduction

Despite much progress made in the past two decades, many cancers do not have a

proven means of prevention or effective treatments. Precision medicine that takes into

account individual susceptibility has become a valid approach to gaining better in-

sights into the biological influences on cancers, which is expected to benefit millions of

cancer patients. A critical component of precision medicine lies in detecting and iden-

tifying important biomarkers that are predictive for cancer patients’ prognosis. The

emergence of large-scale biomedical survival studies, which typically involve excessive

number of biomarkers, has brought high demand in designing efficient screening tools

for selecting predictive biomarkers. The presented work is motivated by a genomic

study of Diffuse large B-cell lymphoma (DLBCL) Rosenwald et al. (2002), with the

goal of identifying gene signatures out of 7399 genes for predicting survival among

240 DLBCL patients. The results may address whether the DLBCL patients’ survival

after chemotherapy could be regulated by the molecular features.

The recently developed variable screening methods, such as the sure independence

screening proposed by Fan and Lv (2008), have emerged as a powerful tool to solve

this problem, but their validity often hinges upon the partial faithfulness assumption,

that is, the jointly important variables are also marginally important. Consequently,

they will fail to identify the hidden variables that are jointly important but have

weak marginal associations with the outcome, resulting in poor understanding of the

molecular mechanism underlying or regulating the disease. To alleviate this problem,

Fan and Lv (2008) further suggested an iterative procedure (ISIS) by repeatedly

using the residuals from the previous iterations, which has gained much popularity.

However, the required iterations have increased the computational burden, and the

statistical properties are elusive.

On the other hand, intensive biomedical research has generated a large body
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of biological knowledge. For example, several studies have confirmed AA805575, a

Germinal-center B-cell signature gene, is relevant to DLBCL survival (Gui and Li

2005, Liu et al. 2013). Including such prior knowledge for improved accuracy in vari-

able selection has drawn much interest. Barut et al. (2016) proposed a conditional

screening (CS) approach in the framework of a generalized linear model (GLM) when

some prior knowledge on feature selection is known, and showed that the CS approach

provides a powerful means to identify jointly-informative but marginally weak asso-

ciations, and Hong et al. (2016) further proposed to integrate prior information using

data-driven approaches.

Development of high dimensional screening tools with survival outcome has been

fruitful. Some related work includes an (iterative) sure screening procedure for Cox’s

proportional hazards model (Fan et al. 2010), a marginal maximum partial likelihood

estimator (MPLE) based screening procedure (Zhao and Li 2012), a censored rank

independence screening method which is robust to outliers and applicable to a general

class of survival model (Song et al. 2014). But to the best of our knowledge, all these

methods essentially posit the partial faithfulness assumption and do not incorporate

the known prior biological information. As a result, they will be likely to suffer the

inability to identify marginally weak but jointly important signals.

To fill the gap, we propose a new conditional screening method for the Cox pro-

portional hazards model by computing the marginal contribution of each covariate

given priorly known information. We refer to it as Cox conditional screening (CoxCS).

As opposed to the conventional marginal screening methods, our method enables the

detection of marginally weak but jointly important signals, which will have important

biological applications as shown in the data example section. Moreover, in contrast

with most screening methods that usually employ subjective thresholds for screening,

we also propose a principled cut-off to govern the screening and control the false posi-
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tives in light of Zhao and Li (2012). This will be especially important in the presence

of hidden variables.

To demonstrate the utility of CoxCS in recovering important hidden variables,

we consider an example with 100 subjects and 1,000 covariates, where the survival

times were generated from a Cox model with baseline hazards function being 1, and

the covariates being generated from the multivariate standard normal distribution

with equal correlation 0.5. The true coefficients in the Cox model are set to be

β1 = . . . = β5 = 1 and β6 = −2.5 and βj = 0 for j ∈ {7, . . . , 1000}. By design,

variable 6 is the hidden variable in that it is marginally uncorrelated with survival

times approximately; see Example 1 in Section 4 for more details. Let β̂C,j denote the

screening statistics by the CoxCS approach (defined in Section 2), where C indexes

variables that are pre-included into the model. When C = ∅, the CoxCS is equivalent

to the marginal screening approach for the Cox proportional hazard model. Figure

1 summarizes the densities of the screening statistics for the hidden variable 6 and

noisy variables 10 to 1,000 for different sets of conditional variables based on 400 sim-

ulated datasets. The results show that with a high probability the marginal screening

statistic for hidden variable 6 is much smaller than those of noisy variables. When

the conditioning set includes one truly active variable, the density plots show a clear

separation between the hidden variables and the noisy variables. When we include

more truly active variables, this separation becomes larger. Interestingly, when con-

ditional on noisy variables that are correlated with both active and hidden variables

in the model, the chance of identifying the hidden variable using CoxCS is still higher

than the marginal screening. A similar phenomenon was observed in the GLM setting

(Barut et al. 2016). This is because when such “noisy” variables are correlated with

both marginally important variables and hidden variables, they may effectively func-

tion as surrogates for the active variables and conditioning on them can help detect
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hidden variables.
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Figure 1: Density of the screening statistics |β̂C,6| (red) for the hidden variable com-

pared with a mixture of densities of screening statistics |β̂C,11:1000| (blue) for the noise
variables with different conditioning sets: (A) C = {∅} which is equivalent to marginal
screening; (B) C = {1} one truly active variables; (C) C = {1, 2} two truly active
variables; (D) C = {7, . . . , 10} four noisy variables.

The theory of conditional screening for GLM has been established by Barut et al.

(2016). But its extension to the survival context is challenging and elusive, calling

for new techniques. To this end, we propose two new functional operators on ran-

dom variables to characterize their linear associations given other random variables:

the conditional linear expectation and the conditional linear covariance. Both are

critical to formulate the regularity conditions for the population level properties of

CoxCS with statistically meaningful interpretations, and facilitate the development

of theory for conditional screening approaches in general settings. A similar concept

of the conditional linear covariance has been introduced by Barut et al. (2016), but

it can not be used for the survival outcome data. In summary, the proposed method

is computationally efficient, adapts to sparse and weak signals, enjoys the good the-

oretical properties under weak regularity conditions, and works robustly in a variety

of settings to identify hidden variables.

The remaining of this paper is organized as follows. In Section 2, we review the Cox

proportional hazard model and present CoxCS approach with some alternatives. In
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Section 3, we list the regularity conditions and establish the sure screening properties.

In Section 4, we further conduct simulation studies to compare our method with the

major competing methods under under a number of scenarios. In Section 4, we apply

our method to study the DLBCL data. We conclude with a a brief discussion on the

future work in Section 5.

2 Model

2.1 The Cox Proportional Hazard Model

Suppose we have n observations with p covariates. Let i and j respectively in-

dex subjects and covariates. Denote by Zi,j covariate j for subject i, write Zi =

(Zi,1, . . . , Zi,p)
T. Let Ti be the underlying survival time and Ci be the censoring time.

We observe Xi = min{Ti, Ci}, and δi = I[Ti ≤ Ci], where I(·) is the indicator func-

tion. Assume that there exists τ > 0, such that P(Xi > τ | Zi) = 0 and assume that

the event time Ti and the censoring time Ci are independent. Suppose Ti follows a

Cox proportional hazards model

λ(t; Zi) = λ0(t) exp(αTZi), (1)

where λ0(t) is an-unspecified baseline hazard and α = (α1, . . . , αp)
T is the true-

coefficient. Let Λ0(t) =
∫ t
0
λ0(s)ds be the cumulative hazard function. Suppose there

is a set of covariates that are known a priori to be related to the survival outcome.

Denote by C the indices of these covariates. Let q = |C| be the number of covariates

in C. Write Zi,C = (Zi,j, j ∈ C)T, Zi,−C = (Zi,j, j /∈ C)T, αC = (αj, j ∈ C)T and

α−C = (αj, j /∈ C)T. Note that in our problem, C is known but both αC and α−C are

unknown. Then the true hazard function in (1) is equivalent to

λ(t; Zi) = λ0(t) exp(αT
CZi,C + αT

−CZi,−C), (2)

To estimate αC and α−C, we introduce the independent counting process Ni(t) =

6
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I(Xi ≤ t, δi = 1) and the at-risk process Yi(t) = I[Xi ≥ t]. When p is small, we

can obtain the partial likelihood estimator α̂ = (α̂T
C , α̂

T
−C)

T by solving the estimation

equation U(α) = 0p with U(α) = (U1(α), . . . , Up(α))T and

Uj(α) =
n∑
i=1

∫ τ

0

{
Zi,j −

S
(1)
j (t,α)

S
(0)
j (t,α)

dNi(t)

}
, (3)

with

S
(m)
j (t,α) =

1

n

n∑
i=1

Zm
i,jYi(t) exp(αT

CZi,C + αT
−CZi,−C), (4)

for m ∈ {0, 1, 2, . . . , }. When p > n, it is computationally and theoretically infeasible

to directly solve the equation (6). By imposing sparsity on the coefficients, one may

maximize the penalized partial likelihood to obtain solutions. However, when p >> n,

we need to employ a variable screening procedure first before performing regularized

regression. We propose a new conditional screening procedure in the next section.

2.2 Cox Conditional Screening

We fit the marginal Cox regression by including the known covariates in C. Specifi-

cally, for j /∈ C, we have the following marginal Cox regression model

λj(t; Zi) = λj,0(t) exp(βT
CZi,C + βZi,j), (5)

from which the maximum partial likelihood estimation equation (β̂
T

C,j, β̂j)
T can be

obtained. It is given by the solution of the following equation:

Vj(βC, β) = [Vj,k(βC, β), k ∈ C ∪ {j}]T = 0q+1, (6)

with

Vj,k(βC, β) =
n∑
i=1

∫ τ

0

{
Zi,k −

R
(1)
j,k(βC, β, t)

R
(0)
j,k(βC, β, t)

dNi(t)

}
, (7)

and

R
(m)
j,k (βC, β, t) =

1

n

n∑
i=1

Zm
i,kYi(t) exp(βT

CZi,C + βZi,j), (8)
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for k ∈ C ∪ {j} and m ∈ {0, 1, 2, . . .}. For a given threshold γ > 0. The selected

index set in addition to set C is given by

M̂−C =
{
j /∈ C : |β̂j| ≥ γ

}
. (9)

Namely, we recruit variables with large additional contribution given ZC. We refer to

this method as Cox conditional screening (CoxCS).

3 Theoretical Results

We establish the theoretical properties of the proposed methods by introducing a few

new definitions along with the basic properties.

3.1 Definitions and Basic Properties

Let (Ω,F ,P) be the probability space for all random variables introduced in this

paper, where Ω is the sample space, F is the σ-algebra as the set of events and P is the

probability measure. Let Rd be a d-dimensional Euclidean vector space, for positive

integer d. Denote by E[•], Var[•] and Cov[•, •] the commonly used expectation,

variance and covariance operator in the probability theory, respectively. For any

d ≥ 1, any random variable ξ : Ω → Rd and any operator A, denote by A[• | ξ]

conditional A of • given ξ. For any vector a = (a1, . . . , ap) ∈ Rp, let aC = (aj, j ∈ C)T

be the sub vector where all its elements are indexed in C. Let ‖a‖d = d

√∑p
j=1 |a|dj be

the L-d norm for any vector a ∈ Rp. For a sequence of random variables indexed by

{ξn}, ξn = op(1) if and only if for any ε1 > 0 and ε2 > 0, there exists N such that for

any n > N P[|ξn| > ε1] < ε2.

For simplicity, let T , C, X, Y (t), Zj, Z and δ represent Ti, Ci, Xi, Yi(t), Zi,j,

Zi and δi respectively, by removing the subject index i. Let ST (t | Z) and SC(t)

represent the survival functions for the event time T and censored time C. Let

FT (t | Z) = 1− ST (t | Z).
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Definition 1. Let M−C = {j /∈ C, αj 6= 0} and w =
∑

j /∈C I[αj 6= 0] be the true

set of non-zero coefficients and its cardinality in model (1), aside from the important

predictors known a priori.

To study the asymptotic property of (β̂
T

C,j, β̂j)
T, define the population level quan-

tity as follows:

Definition 2. Let (βT
C,j, βj)

T be the solution of the following equations

vj(βC, β) = [vj,k(βC, β), k ∈ C ∪ {j}]T = 0q+1, (10)

with

vj,k(βC, β) =

∫ τ

0

[
s
(1)
k (t)−

r
(1)
j,k (t,βC, β)

r
(0)
j,k (t,βC, β)

s
(0)
k (t)

]
dt, (11)

where s
(m)
k (t) = E [Zm

k dN(t)] and r
(m)
j,k (t,βC, β) = E[R

(m)
j,k (t,βC, β)].

Definition 3. Let βC,0 be the solution of the following equations

vC(βC) = [vj,k(βC, 0), k ∈ C]T = 0q. (12)

Proposition 1. vj(βC,0, 0) = 0q+1 if and only if vj,j(βC,0, 0) = 0, for all j ∈ C.

To understand the intuition of the population level properties for the Cox con-

ditional screening, we need to define a conditional linear expectation. A similar

concept has been used to study the conditional sure independence screening (CSIS)

in the GLM setting by Barut et al. (2016). We provide a formal definition here.

Definition 4. For two random variables ζ : Ω→ Rd and ξ : Ω→ Rp. The conditional

linear expectation of ζ given ξ is defined as

E∗(ζ | ξ) = E[ζ] + AT{ξ − E(ξ)}, (13)

where A = argminB∈Rd×Rp E[(ζ − E[ζ] − BT{ξ − E(ξ)})2 | ξ]. Also, define notation

E∗(ζ) = E(ζ).

9
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The basic properties of the conditional linear expectation are listed in the following

proposition.

Proposition 2. Let ζ, ζ1, ζ2 and ξ be any four random variables in the probability

space (Ω,F ,P). The following properties hold for the conditional linear expectation

E∗[• | ξ] given ξ:

1. Closed form: E∗(ζ | ξ) = E[ζ] + Cov(ζ, ξ)Var[ξ]−1{ξ − E(ξ)}.

2. Stability: E∗[ξ | ξ] = ξ.

3. Linearity: E∗[A1ζ1 + A2ζ2 | ξ] = A1E
∗[ζ1 | ξ] + A2E

∗[ζ2 | ξ], where A1 and

A2 are two matrices that are compatible with the equation.

4. Law of total expectation: E∗[E∗(ζ | ξ)] = E[E∗(ζ | ξ)] = E[ζ].

Remark 1. In general, E∗(ζ | ξ) 6= E(ζ | ξ). Also, ζ and ξ are independent does not

imply E∗(ζ | ξ) = 0, unless ζ and ξ are jointly normally distributed.

Definition 5. For any random variables ζ1 : Ω→ Rd1, ζ2 : Ω→ Rd2 and ξ : Ω→ Rp.

The conditional linear covariance between ζ1 and ζ2 given ξ is defined as

Cov∗(ζ1, ζ2 | ξ) = E∗[{ζ1 − E∗(ζ1 | ξ)}{ζ2 − E∗(ζ2 | ξ)} | ξ]. (14)

Remark 2. By Proposition 2, we can easily verify the following properties.

Proposition 3. The conditional linear covariance defined in definition 5 has the

following properties

1. Linear independence and linear zero correlation:

Cov∗(ζ1, ζ2 | ξ) = 0 ⇔ E∗(ζ1ζ2 | ξ) = E∗(ζ1 | ξ)E∗(ζ2 | ξ).

2. Expectation of conditional linear covariance:

E[Cov∗(ζ1, ζ2 | ξ)] = Cov(ζ1, ζ2)− Cov(ζ1, ξ)Var(ξ)−1Cov(ξ, ζ2).
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3. Sign: for any increasing function h(·) : R→ R and random variable η : Ω→ R,

then

Cov∗(h(η), η | ξ) ≥ 0.

Definition 6. Define

vj(βC, β) = vj,j(βC, β) +
∑
k∈C

akvj,k(βC, β),

where vector aC = [ak, k ∈ C]T such that E∗[Zj | ZC] =
∑

k∈C akZk.

Proposition 4. vj,j(βC,0, 0) = 0 if and only if vj(βC,0, 0) = 0.

3.2 Regularity Conditions

We list all conditions for the theoretical results.

Condition 1. For each j /∈ C and k ∈ C ∪ {j}, there exists a neighborhood of

(βT
C,j, βj)

T, which is defined as

Bj = {(βT
C , β)T : ‖(βT

C , βj)
T − (βT

C,j, βj)
T‖1 < δj}, with δj > 0,

such that for each τ <∞,

1. For m = 0, 1,

sup
t∈[0,τ ],(βT

C ,β)
T∈Bj
‖R(m)

j,k (βC, β)− r(m)
j,k (βC, β)‖2 → 0,

in probability as n→∞.

2. There exists a constant L > 0 such that

L = min
j /∈C

[
inf

t∈[0,τ ],(βT
C ,β)

T∈Bj
{r(0)j,k (βC, β, t)}

]
.

Of note, {r(0)j,k (βC, β, t)} does not depend on k. Let δ = maxj /∈C δj.

11
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Condition 2. The covariates Zj’s satisfy the following conditions

1. For j ∈ {1, . . . , p}, E[Zj] = 0 and there exists a constant K0 such that P(Zj >

K0) = 0.

2. Zj is a time constant variable, for all j.

3. All Zj’s, j ∈M−C are independent of all Zk’s, k /∈M−C given ZC.

4. For constant c1 > 0 and κ < 1/2,

min
j∈M−C

|E[Cov∗(Zj,P[δ = 1 | Z] | ZC)])| ≥ c1n
−κ.

Condition 3. There exists a constant K1 such that

‖α‖1 < K1 and ‖(βT
C,j, βj)

T‖1 < K1,

for all p > 0.

Condition 4. For all j /∈ C, there exists a constant M > 0 such that

M‖(β̂
T

C,j, β̂j)
T − βT

C,j, βj)
T‖2 ≤ ‖Vj(β̂C,j, β̂j)−Vj(βC,j, βj)‖2.

3.3 Properties on Population Level

Lemma 1. The solution of vj(βC, β) = 0q+1 and the solution of vC(βC) = 0q are

both unique, for any j /∈ C.

Theorem 1. Suppose Condition 2 hold, βj = 0 if and only if αj = 0 for all j /∈ C.

Theorem 2. Suppose Condition 2 holds. There exist constants c2 > 0 and κ < 1/2

such that

min
j∈M−C

|βj| ≥ c2n
−κ.

12
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3.4 Properties on Sample Level

Theorem 3. Suppose Conditions 1–4 hold. For any ε1 > 0 and any ε2 > 0, there

exits positive constants c3, c4 and integer N such that for any n > N ,

1. For any 0 < κ < 1/2,

P

[
max
j∈M−C

|β̂j − βj| >
c2
2

(n−κ − ε1)
]
≤ 2w(q + 1) exp(−c3n1−2κ) + ε2.

where w is the size of M−C, q is the size of C and c2 is the same value in

Theorem 2 and c3 does not dependent on ε1, ε2 and κ, but N depends on ε1 and

ε2.

2. If γn = c4n
−κ, where κ is the same number in Condition 2, then

P

[
min
j∈M−C

|β̂j| > γn

]
≥ 1− 2w(q + 1) exp(−c3n1−2κ)− ε2. (15)

where c4 does not depend on ε1, ε2 and κ, thus

lim
n→∞

P
[
M−C ⊆ M̂−C

]
= 1. (16)

3.5 Controlling the False Discover Rate

Define the information matrix

Ij(βC, βj) = −
(
∂Vj,k(βC, βj)

∂βk′

)
k,k′∈C∪{j}

, (17)

which is of q+ 1 dimension. Denote σ̂2
j = [Ij(βC,j, β̂j)]

−1
q+1,q+1 be the variance estimate

of β̂j. For a given threshold γ > 0, we can have a different way to select the index

which is given by

M̂∗
−C =

{
j /∈ C :

|β̂j|
σ̂j
≥ γ

}
, (18)

as suggested by Zhao and Li (2012). We refer to (18) as “CS-Wald”.
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Another alternative to construct the screening statistics, which is also scale free,

is to utilize the partial log likelihood ratio statistic. Specifically,

`(βC, β) =
n∑
i=1

∫ τ

0

{
βT
CZi,C + βZi,j − log

(
R

(0)
j,k(βC, β, t)

)
dNi(t)

}
. (19)

Suppose (β̂
T

C,j, β̂j)
T maximizes (19) for a given j. Then, for a given threshold

γ > 0, the index set can be chosen by considering the following likelihood ratio

statistic.

M̂∗
−C =

{
j /∈ C : `(β̂C,j, β̂j)− `(β̂C,0, β = 0) ≥ γ

}
, (20)

where β̂C,0 maximizes `(βC, 0). Hereafter (20) will be referred to as “CS-PLIK”.

4 Simulation Studies

The utility of the proposed methods was evaluated via extensive simulations. De-

note by CS-MPLE, a version of CoxCS that is based on the criteria of (9). For

completeness, we considered two other variations of CoxCS, namely, CS-PLIK and

CS-Wald. The finite sample performance of the proposed methods was compared

with the following marginal screening methods designed for the survival data.

• CRIS: censored rank independence screening proposed by Song et al. (2014).

• CORS: correlation screening, which is an extension of sure independence screen-

ing to the censored outcome data by using inverse probability weighting; see Song

et al. (2014).

• PSIS-Wald: Wald test based on the marginal Cox model fitted on each covariate;

see Zhao and Li (2012).

• PSIS-PLIK: partial likelihood ratio test based on the marginal Cox model fitted

on each covariate, which is asymptotically equivalent to Zhao and Li (2012).
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We illustrated our methods and compared them with the competing methods on

data simulated as below.

Example 1. The survival time was generated from a Cox model with baseline hazards

function being set to be 1, i.e.,

λ(t | Z) = exp(βTZ),

where Z were generated from the standard normal distribution with equal correlation

0.5 and β = (1T
5 ,−2.5,0T

p−6)
T.

Example 2. The survival time was generated from a Cox model with baseline hazards

function being set to be 1, i.e.,

λ(t | Z) = exp(−1 + βTZ),

where β = (10,0T
p−2, 1)T and all covariates were generated from the independent

standard normal distribution.

Example 3. The same as Example 2 except that the first p − 1 covariates were gen-

erated from the multivariate standard normal distribution with an equal correlation

of 0.9.

The simulated data examples were designed in such a way that variables Z6 in

Example 1 and Zp in Example in 3 possessed marginally weak but conditionally strong

signals, which made marginal screening approaches not ideal for identifying them. For

the GLM, Barut et al. (2016) provided a similar simulation design in the context of

non-censored regression. Figure 3 depicted the distribution of the absolute correlation

between the survival time and the covariate variables, where uncensored data were

used to compute the marginal correlation between the event time and the covariate

using an inverse probability weighting (Song et al. 2014). Clearly, in Example 1

the marginal signal strength of Z6 was weaker than most noisy (inactive) variables

15
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Figure 2: Absolute correlation of the survival time and the covariate variables. The
blue short-dashed lines (· · · · ·) represents the distribution of the inactive variables; the
green long-dashed (– – –) lines for the active variables with relatively strong signals;
the red solid lines (——) for the hidden active variable.
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(Z7 − Z1000), while the marginal signal strength of Z1000 in Examples 2 and 3 was

similar or even lower than most noisy variables. The marginal correlation between

the survival time and each variable was getting weaker with heavier censoring.

In all these examples, the censoring times Ci were independently generated from

a uniform distribution U [0, c], with c chosen to give approximately 20% and 60% of

censoring proportions. We set n = 100 and varied p from 1000 (high-dimensional)

to 10000 (ultrahigh-dimensional). For each configuration, a total of 400 simulated

datasets were generated.

We considered two metrics to compare the performance between different methods:

the minimum model size (MMS) which is the minimum number of variables that need

to be selected in order to include all active variables, and the true positive rate (TPR)

which is the proportion of active variables that are included in the first n selected

variables. Hence, a method with small MMS and large TPR can be more efficient

to discover true signals. To have a fair comparison, we added one (the number of

conditioning variable in our examples) to MMS for the proposed methods (CS-MPLE,

CS-Wald and CS-PLIK). In practice, identifying conditional sets normally requires

some prior biological information. In our simulations, we simply choose the covariate

Z1 as the conditioning variable. In practice, we propose to choose the variable with

the highest marginal signal strength as the conditioning variable, which can be a

practical solution in the absence of prior biological knowledge. In Examples 1–3,

C = {1} is the true conditioning set, the signal of which was strong enough to be

easily selected by other marginal screening methods.

Table 1 demonstrated the superiority of our proposed methods under the difficult

scenarios as reflected in Examples 1–3. Indeed, the proposed methods drastically

reduced MMS in Examples 1–3 compared to the marginal approaches. Moreover, we

noted that all the marginal screening methods had tremendous difficulties in identi-

17
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Figure 3: Median number of active variables that are included in the model with
different thresholds by different methods
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fying Z6 in Example 1 and Z1000 in Examples 2–3. Indeed, these variables had the

lowest priorities to be included by using the competing methods. On the other hand,

the proposed approaches greatly outperformed the marginal approaches, as the condi-

tioning approaches effectively boosted the signal strengths of the “hidden” variables.

The performance by CS-MPLE, CS-Wald and CS-PLIK are quite similar in all the

cases in Examples 1 and 2. In Example 3, there is a very high correlation among the

covariate variables, CS-MPLE has a slightly larger MMS compared to the CS-Wald

and CS-PLIK which well control the false discover rate in this cases.

5 Application

We illustrated the practical utility of the proposed method by applying it to analyze

the diffuse large B-cell lymphoma (DLBCL) dataset of Rosenwald et al. (2002). The

dataset, which was originally collected for identifying gene signatures relevant to the

patient survival from time of chemotherapy, included a total of 240 DLBCL patients

with 138 deaths observed during the followup and a median survival time of 2.8 years.

Along with the clinical outcomes, the expression levels of 7,399 genes were available

for analysis. In our subsequent analysis, each gene expression was standardized to

have mean zero and variance 1.

To facilitate the use of our method, we identified the conditional set by resorting to

the medical literature. As gene AA805575, a Germinal-center B-cell signature gene,

has been known to be predictive to DCBCL patients’ survival in the literature (Liu

et al. 2013, Gui and Li 2005), we used it as the conditional variable in our proposed

procedure. For comparisons, we also analyzed the same data using various compet-

ing methods introduced in the simulation section and computed the corresponding

concordance statistics (C-statistics) (Uno et al. 2011).

Specifically, we randomly assigned 160 patients to the training set and 80 patients
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(n, p) = (100, 1000) (n, p) = (100, 10000)
Method MMS TPR MMS TPR

CRIS 1000.0 (3.0) 0.50 (0.17) 9995.0 (37.0) 0.17 (0.17)
CORS 944.0 (168.2) 0.33 (0.33) 9466.0 (1101.8) 0.00 (0.17)

Example 1 PSIS-PLIK 1000.0 (0.0) 0.67 (0.17) 10000.0 (2.2) 0.33 (0.17)
CR ≈ 20% PSIS-Wald 1000.0 (0.0) 0.67 (0.17) 10000.0 (2.2) 0.33 (0.17)

CS-PLIK 152.5 (272.2) 0.83 (0.17) 1322.0 (2253.8) 0.67 (0.17)
CS-Wald 154.5 (274.5) 0.83 (0.17) 1286.5 (2287.0) 0.67 (0.17)

CS-MPLE 143.0 (249.0) 0.83 (0.17) 1321.0 (2305.8) 0.50 (0.17)

CRIS 926.5 (151.8) 0.33 (0.17) 9429.0 (1405.0) 0.00 (0.17)
CORS 898.0 (152.2) 0.00 (0.17) 8976.0 (1610.0) 0.00 (0.00)

Example 1 PSIS-PLIK 1000.0 (2.0) 0.67 (0.17) 9999.0 (17.0) 0.33 (0.17)
CR ≈ 60% PSIS-Wald 1000.0 (2.0) 0.67 (0.17) 9999.0 (17.0) 0.33 (0.17)

CS-PLIK 227.0 (351.2) 0.83 (0.17) 2383.5 (3331.5) 0.50 (0.33)
CS-Wald 227.5 (348.2) 0.83 (0.17) 2403.5 (3233.2) 0.50 (0.33)

CS-MPLE 228.5 (320.5) 0.83 (0.17) 2229.5 (3046.8) 0.50 (0.17)

CRIS 262.5 (401.8) 0.50 (0.00) 2871.0 (4314.0) 0.50 (0.00)
CORS 490.5 (510.8) 0.50 (0.00) 4878.5 (5099.8) 0.50 (0.00)

Example 2 PSIS-PLIK 318.0 (492.8) 0.50 (0.00) 3777.0 (5690.8) 0.50 (0.00)
CR ≈ 20% PSIS-Wald 318.5 (494.2) 0.50 (0.00) 3786.5 (5707.8) 0.50 (0.00)

CS-PLIK 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)
CS-Wald 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-MPLE 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CRIS 399.5 (478.0) 0.50 (0.00) 3601.0 (4894.2) 0.50 (0.00)
CORS 603.5 (390.5) 0.00 (0.00) 5988.0 (4353.0) 0.00 (0.00)

Example 2 PSIS-PLIK 325.0 (498.5) 0.50 (0.00) 3942.5 (5679.5) 0.50 (0.00)
CR ≈ 60% PSIS-Wald 322.0 (501.0) 0.50 (0.00) 3915.5 (5679.5) 0.50 (0.00)

CS-PLIK 2.0 (0.0) 1.00 (0.00) 2.0 (1.0) 1.00 (0.00)
CS-Wald 2.0 (0.0) 1.00 (0.00) 2.0 (2.0) 1.00 (0.00)

CS-MPLE 2.0 (0.0) 1.00 (0.00) 2.0 (4.0) 1.00 (0.00)

CRIS 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)
CORS 1000.0 (0.0) 0.50 (0.50) 10000.0 (0.0) 0.00 (0.00)

Example 3 PSIS-PLIK 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)
CR ≈ 20% PSIS-Wald 1000.0 (0.0) 0.50 (0.50) 10000.0 (0.0) 0.00 (0.50)

CS-PLIK 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)
CS-Wald 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-MPLE 3.0 (4.0) 1.00 (0.00) 7.5 (33.0) 1.00 (0.00)

CRIS 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)
CORS 783.0 (463.8) 0.00 (0.50) 7967.0 (4972.2) 0.00 (0.00)

Example 3 PSIS-PLIK 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)
CR ≈ 60% PSIS-Wald 1000.0 (0.0) 0.00 (0.00) 10000.0 (0.0) 0.00 (0.00)

CS-PLIK 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)
CS-Wald 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-MPLE 20.0 (55.2) 1.00 (0.00) 161.5 (553.5) 0.50 (0.50)

Table 1: Median minimum model size (MMS) and median true positive rates (TPR)
along with their corresponding IQRs (in the parentheses) based on 400 simulated
data sets.

20

http://biostats.bepress.com/umichbiostat/paper117



to the testing set, while maintaining the censoring proportion roughly the same in

each set. For each split, we applied each method to select top 31(= 160/ log(160))

variables using the training set. LASSO was performed subsequently for refined

modeling, with the tuning parameter selected by the 10-fold cross-validation. The

risk score for each subject was obtained by using the final model selected by LASSO

in the training dataset and the C-statistics was obtained in the testing dataset. A

total of 100 splits were made and the average C-statistics and the model size (MS)

were reported in Table 2. By the criterion of C-statistics, the proposed method seemed

to have more predictive power.

CRIS CORS PSIS-PLIK PSIS-Wald

C-statistics 0.54 (0.21) 0.58 (0.20) 0.58 (0.19) 0.55 (0.20)
Model size 14.41 (3.00) 6.83 (3.70) 15.22 (2.93) 15.65 (2.89)

CS-MPLE CS-PLIK CS-Wald

C-statistics 0.63 (0.18) 0.63 (0.18) 0.62 (0.19)
Model size 16.74 (3.26) 15.90 (3.01) 16.28 (3.41)

Table 2: Summary of C-statistics and the model size for different methods.

Our further scientific investigation focused on identifying the relevant genes by

utilizing the full dataset. Applying our proposed method, we selected top 44 (=

240/ log(240)) genes, before using LASSO to reach the final list. It follows that CS-

MPLE, CS-PLIK and CS-Wald selected 20, 16 and 16 genes, respectively. Among

the 22 uniquely selected genes by either of them, 14 genes were overlapped and were

reported in Table 3. Twelve genes among these 22 genes belong to Lymph-node sig-

nature group, proliferation signature group, and Germinal-center B-cell group defined

by Rosenwald et al. (2002). We observed that 13 of these 22 genes were chosen by

at least one of CRIS, CORS, PSIS-PLIK, and PSIS-Wald. On the other hand, gene

AB007866, Z50115, S78085, U00238, AL050283, J03040, U50196, and AA830781, and

M81695 were only identified by using our methods.
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In fact, only a few studies have suggested an important role of M81695 (Deb and

Reddy 2003, Chow et al. 2001, Mikovits et al. 2001, Stewart and Schuh 2000) or

AA830781 (Li and Luan 2005, Binder and Schumacher 2009, Schifano et al. 2010)

in predicting DLBCL survival. Indeed, as the marginal correlation between M81695

and the survival time and between AA830781 and the survival time are markedly

low at 0.008 and 0.097, respectively. Thus, it is highly likely to be missed by using

the conventional screening approaches. Schifano et al. (2010) also commented their

majorization-minimization algorithm selected AA830781 because of coexpression or

correlation with other relevant genes. A more detailed investigation of its functions

in the context of a broader class of blood cancers, including lymphoma, may shed

light on preventing, treating and controlling the lethal blood cancers.
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6 Discussion

In this paper, we have proposed a new conditional variable screening approach for

the Cox proportional hazard model with ultra-high dimensional covariates. The pro-

posed partial likelihood based conditional screening approaches are extremely com-

putationally efficient, with a solid theoretical foundation. Our method and theory

are extensions of the conditional sure independence screening (CSIS) Barut et al.

(2016), which is designed for the GLM. In the development of theory, we introduce

the new concept of the conditional linear covariance for the first time, which is useful

to specify the regularity conditions for the model identifiability and the sure screening

property. This also provides a solid building block for a general theoretical framework

of conditional variable screening in the context of other semi-parametric models, such

as the partially linear single-index model.

We have mainly focused on studying the theoretical properties of CS-MPLE, which

extends the work of Barut et al. (2016) in the GLM setting, though development of

the inference procedures for the two variants of the proposed method, namely, CS-

PLIK and CS-Wald, will be more involved and out of scope of this paper. However,

as indicated by the simulation studies, these two variants may induce substantial

improvement especially when the variables are highly correlated. More research is

warranted.

Our work also enlightens a few directions that are worth ensuing effort. First, as

our proposal requires the prior information to be known and informative, it remains

statistically challenging to develop efficient screening methods in the absence of such

information. Recently, in the context of GLM, Hong et al. (2016) has proposed a

data-driven alternative when a pre-selected set of variables is unknown. It is thus

of substantial interest to develop a data-driven conditional screening for the survival

model. Second, even with prior knowledge, an open question often lies in how to
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balance it with the information extracted from the given data. There has been some

recent work on how to incorporate prior information. For example, Wang et al. (2013)

developed a LASSO method by assigning different prior distributions to each subset

according to a modified Bayesian information criterion that incorporates prior knowl-

edge on both the network structure and the pathway information, and Jiang et al.

(2015) proposed “prior lasso” (plasso) to balance between the prior information and

the data. A natural extension of the current work is to develop a variable screen-

ing approach that incorporates more complex prior knowledge, such as the network

structure or the spatial information of the covariates. We will report the progress

elsewhere.
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7 Appendix

7.1 Proof of Theorem 1

Proof. First we make the connection between βj to the expected conditional linear

covariance between Zj and P[δ = 1 | Z] given ZC, that is

E[Cov∗(Zj,P[δ = 1 | Z] | ZC)],

then by Condition 2, we relate it to αj. For any j /∈ C and k ∈ C, it is straightforward

to see that

s
(m)
k (t) = E[Zm

k λ0(t) exp(ZTα)ST (t | Z)SC(t)], (21)

and

r
(m)
j,k (t,βC, β) = E[Zm

k exp(ZT
CβC + Zjβ)ST (t | Z)SC(t)], (22)

for m = 0, 1. Then

vj,k(βC, β)

=

∫ τ

0

E
[
Wj,k(t,βC, β) exp(ZTα)ST (t | Z)SC(t)λ0(t)

]
dt, (23)
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where

Wj,k(t,βC, β) = Zk −
E[Zk exp(ZT

CβC + Zjβ)ST (t | Z)SC(t)]

E[exp(ZT
CβC + Zjβ)ST (t | Z)SC(t)]

.

By Proposition 2,

E
[
Wj,k(t,βC, β) exp(ZTα)ST (t | Z)SC(t)

]
= E

{
E∗
[
Wj,k(t,βC, β) exp(ZTα)ST (t | Z)SC(t)

]}
.

By Definition 6,

vj(βC, β) = vj,j(βC, β)−
∑
k∈C

akvj,k(βC, β)

= E [Cov∗(Zj,P[δ = 1 | Z] | ZC)]− g(βC, β).

where

E [Cov∗(Zj,P[δ = 1 | Z] | ZC)]

=

∫ τ

0

E
[
(Zj − E∗[Zj | ZC]) exp(ZTα)ST (t | Z)SC(t)λ0(t)

]
dt,

and

gj(βC, β)

=

∫ τ

0

E[(Zj − E∗[Zj | ZC]) exp(ZT
CβC + Zjβ)ST (t | Z)SC(t)]

E[exp(ZT
CβC + Zjβ)ST (t | Z)SC(t)]

×E
[
exp(ZTα)ST (t | Z)λ0(t)SC(t)

]
dt.

By Definition 2, vj(βC,j, βj) = 0q+1,

gj(βC,j, βj) = E [Cov∗(Zj,P[δ = 1 | Z] | ZC)] .

When αj = 0, then E [Cov∗(Zj,P[δ = 1 | Z] | ZC)] = 0. Thus gj(βC,j, βj) = 0.

Also, by Propositions 1 and 2, gj(βC,0, 0) = 0, then vj(βC,0, 0) = 0q+1. By uniqueness

in Lemma 1, βj = 0.
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When αj 6= 0, by Condition 2, we have

|gj(βC,j, βj)| = |E [Cov∗(Zj,P[δ = 1 | Z] | ZC)] | > c1n
−κ.

This implies that gj(βC,j, βj) and E [Cov∗(Zj,P[δ = 1 | Z] | ZC)] are both nonzero and

have the same signs since they are equal. Next we show for any βC, gj(βC, 0) and

E [Cov∗(Zj,P[δ = 1 | Z] | ZC)] have the opposite signs unless they are equal to zero.

This fact implies that βj 6= 0. Specifically, note that P(δ = 1 | Z) is the probability

of occurring the event and ST (t | Z)SC(t) = P(X > t | Z) represents the probability

at risk at time t. Based on Model (1), for any t,

∂P(X > t | Z)

∂Zj
× ∂P(δ = 1 | Z)

∂Zj
≤ 0.

By Proposition 3, Cov∗(Zj,P[δ = 1 | Z] | ZC) and Cov∗[Zj, ST (t | Z)SC(t) | ZC] have

the opposite signs unless they are zero. This further implies that for any βC,

gj(βC, 0) =

∫ τ

0

E[exp(ZT
CβC)Cov∗[Zj, ST (t | Z)SC(t) | ZC]]

E[exp(ZT
CβC)ST (t | Z)SC(t)]

×E
[
exp(ZTα)ST (t | Z)λ0(t)SC(t)

]
dt.

and E [Cov∗(Zj,P[δ = 1 | Z] | ZC)] have opposite signs unless they are equal to zero.

Therefore, βj 6= 0.

7.2 Proof of Theorem 2

Proof. For any j ∈M−C, we have βj 6= 0 by Theorem 1, by mean value theorem, for

some β̃j ∈ (0, βj),

|vj(βC,j, 0)| = |vj(βC,j, βj)− vj(βC,j, 0)| =
∣∣∣∣∂vj∂β

(βC,j, β̃j)

∣∣∣∣ |βj|,
Next we show that

∣∣∣∂vj∂β (βC,j, β̃j)
∣∣∣ is bounded. For given any βC, consider gj(βC, β) as

a function of β, Then

∂gj
∂β

(βC, β) = E

[∫ τ

0

Hj(t,βC, β)SC(t)dFT (t | Z)

]
.
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where

Hj(t,βC, β) =
E[exp(ZT

CβC)Cov∗[Z2
j exp(Zjβ), ST (t | Z) | ZC]]

E[exp(ZT
CβC + Zjβ)ST (t | Z)]

−E[exp(ZT
CβC)Cov∗[Zj exp(Zjβ), ST (t | Z) | ZC]]E[Zj exp(ZT

CβC + Zjβ)ST (t | Z)]

[E[exp(ZT
CβC + Zjβ)ST (t | Z)]]2

By Condition 2.1, P(|Z| < K0) = 1, then supβC ,β
|Hj(t,βC, β)| ≤ 2K2

0 . Thus,∣∣∣∣∂vj∂β
(βC,j, β̃j)

∣∣∣∣ ≤ sup
βC ,β

∣∣∣∣∂gj∂β
(βC, β)

∣∣∣∣ ≤ 2K2
0 |E[E[SC(T ) | Z]] ≤ 2K2

0 .

By the proof in Theorem 1, g(βC,j, 0) and E [Cov∗(Zj,E{FT (C | Z) | Z} | ZC)] have

the opposite signs, and by Condition 2,

|vj(βC,j, 0)| = |E [Cov∗(Zj,P[δ = 1 | Z] | ZC)] |+ |gj(βC,j, 0)| > c1n
−κ.

Taking c2 = 0.5K−20 c1, βj > 0.5K−20 |vj(βC,j, 0)| > c2n
−κ. This completes the proof.

7.3 Proof of Theorem 3

Proof. For any j /∈ C and k ∈ C ∪ {j}, by Lin and Wei (1989), we have

Vj(βC, β) = En{Wi,j(βC, β)}+ op(1),

where En[·] denotes the empirical measure, which is defined as En[ξi] = n−1
∑n

i=1 ξi

for any random variables ξ1, . . . , ξn, and Wi,j(βC, β) are independent over i, and

write Wi,j(βC, β) = [Wi,j,k(βC, β), k ∈ C ∪ {j}]T with

Wi,j,k(βC, β) =

∫ τ

0

{
Zi,k −

r
(1)
j,k (βC, β, t)

r
(0)
j,k (βC, β, t)

}
dNi(t)

−
∫ τ

0

Yi(t) exp(Zi,Cβ
T
C + Zi,jβ)

r
(0)
j,k (βC, β, t)

{
Zi,k −

r
(1)
j,k (βC, β, t)

r
(0)
j,k (βC, β, t)

}
dE[Ni(t)].
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Note that given any i, j, k, with probability one |Wi,j,k(βC, β)| are uniformly bounded.

Specifically, by Conditions 1.2, 2.1 and 3, with probability one, for all t ∈ [0, τ ],

(βT
C , β)T ∈ Bj, ∣∣∣∣∣Zi,k − r

(1)
j,k (βC, β, t)

r
(0)
j,k (βC, β, t)

∣∣∣∣∣ ≤ |Zi,k|+K0,∣∣∣∣∣Yi(t) exp(Zi,Cβ
T
C + Zi,jβ)

r
(0)
j,k (βC, β, t)

∣∣∣∣∣ ≤ exp{K0(K1 + δ)− log(L)},

and ∣∣∣∣∫ τ

0

dE[Ni(t)]

∣∣∣∣ ≤ Λ0(τ) exp(K0K1).

Thus, with probability one,

|Wi,j,k(βC, β)| ≤ K2,

whereK2 = 2K0(1+Λ0(τ) exp(2K0K1+K0δ−logL)). By the fact that E[Wi,j,k(βC, β)] =

0,

Var[Wi,j,k(βC, β)] = E[|Wi,j,k(βC, β)|2] < K2
2

By Lemma 2.2.9 (Bernsterin’s inequality) of Van Der Vaart and Wellner (1996),

for any t > 0, for all j, k, βC and β, we have

P

(
|En(Wi,j,k(βC, β))| > t

n

)
≤ 2 exp

(
−1

2

t2

nK2
2 +K2t/3

)
.

Note that the above inequality holds for every j /∈ C and k ∈ C ∪ {j}. By Bonferroni

inequality,

P

(
‖En(Wi,j(βC, β))‖2 >

t

(q + 1)n

)
≤ 2(q + 1) exp

(
−1

2

t2

nK2
2 +K2t/3

)
.

Since,

‖Vj(βC, β)− En(Wi,j(βC, β))‖2 = op(1).

Then for any ε1 > 0 and ε2 > 0, there exits N1, such that for any n > N1

P(‖Vj(βC, β)− En(Wi,j(βC, β))‖2 > Mε1/2) < ε2.
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where M is the same value in Condition 4. By Triangle inequality and Bonferroni

inequality, we have

P

(
‖Vj(βC, β)‖2 >

t

(q + 1)n

)
≤ P

(
‖En(Wi,j(βC, β))‖2 >

t

(q + 1)n
−Mε1/2

)
+ P(‖Vj(βC, β)− En(Wi,j(βC, β))‖2 > Mε2/2)

When n→∞, take t = c2M(q + 1)n1−κ/2 > 0 on both side of the inequality, where

c2 is the same value in Theorem 2, we have

P

(
‖Vj(βC, β)‖2 >

Mc2
2

(n−κ − ε1)
)
≤ 2(q + 1) exp

(
− M2c22

8(q + 1)2
n1−2κ

K2
2 +K2n−κ/3

)
+ ε2.

Take N = max{d(K2/3)1/κe, N1}, then for any n > N , n−κ < 3/K2, and

P

(
‖Vj(βC, β)‖2 >

Mc2
2

(n−κ − ε1)
)
≤ 2(q + 1) exp

(
− M2c22

8(q + 1)2
n1−2κ

K2
2 + 1

)
+ ε2.

Note that the above inequality holds for all (βT
C , β)T ∈ Bj, particularly for (βT

C,j, βj)
T,

j /∈ C. Also, we have Vj(β̂C,j, β̂j) = 0q+1. By Condition 4, we have

P
(
|β̂j − βj| >

c2
2

(n−κ − ε1)
)

≤ P
(
‖(β̂

T

C,j, β̂j)
T − (βT

C,j, βj)
T‖2 >

c2
2

(n−κ − ε1)
)

≤ 2(q + 1) exp

(
− M2c22

8(q + 1)2
n1−2κ

K2
2 + 1

)
+ ε2.

Taking c3 =
M2c22

8(q+1)2(K2
2+1)

and by Bonferroni completes the proof for part 1.

For part 2, by Theorem 2,

min
j∈M−C

|βj| > c2n
−κ.

Note that, for any j ∈M−C, event{
|β̂j − βj| ≤ c2n

−κ/2− ε1
}

⊆
{
|β̂j| ≥ |βj| − c2n−κ/2 + ε1

}
⊆
{
|β̂j| ≥ c2n

−κ/2 + ε1

}
.
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Take γn = c4n
−κ with c4 = c2/4,{

max
j∈M−C

|β̂j − βj| ≤ c2n
−κ/2− ε1

}
⊆
{

min
j∈M−C

|β̂j| ≥ c2n
−κ/2 + ε1

}
⊆
{

min
j∈M−C

|β̂j| ≥ γn + ε1

}
.

Thus,

P
[
M−C ⊆ M̂−C

]
= P

[
min
j∈M−C

|β̂j| > γn

]
≥ P

[
min
j∈M−C

|β̂j| > γn + ε1

]
≥ 1− P

[
max
j∈M−C

|β̂j − βj| ≤ c2n
−κ/2− ε1

]
≥ 1− 2w(q + 1) exp(−c3n1−2κ)− ε2.

Let n→∞, we have for any ε2 > 0,

lim
n→∞

P
[
M−C ⊆ M̂−C

]
≥ 1− ε2.

Note that the left side of the above equation does not depends on n any more. Taking

ε2 → 0 completes proof.
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