5 research outputs found

    A hybrid of convolutional neural network and long short-term memory network approach to predictive maintenance

    Get PDF
    Predictive maintenance (PdM) is a successful strategy used to reduce cost by minimizing the breakdown stoppages and production loss. The massive amount of data that results from the integration between the physical and digital systems of the production process makes it possible for deep learning (DL) algorithms to be applied and utilized for fault prediction and diagnosis. This paper presents a hybrid convolutional neural network based and long short-term memory network (CNN-LSTM) approach to a predictive maintenance problem. The proposed CNN-LSTM approach enhances the predictive accuracy and also reduces the complexity of the model. To evaluate the proposed model, two comparisons with regular LSTM and gradient boosting decision tree (GBDT) methods using a freely available dataset have been made. The PdM model based on CNN-LSTM method demonstrates better prediction accuracy compared to the regular LSTM, where the average F-Score increases form 93.34% in the case of regular LSTM to 97.48% for the proposed CNN-LSTM. Compared to the related works the proposed hybrid CNN-LSTM PdM approach achieved better results in term of accuracy

    NOVELTY DETECTION FOR PREDICTIVE MAINTENANCE

    Get PDF
    Since the advent of Industry 4. 0 significant research has been conducted to apply machine learning to the vast array of Internet of Things (IoT) data produced by Industrial Machines. One such topic is to Predictive Maintenance. Unlike some other machine learning domains such as NLP and computer vision, Predictive Maintenance is a relatively new area of focus. Most of the published work demonstrates the effectiveness of supervised classification for predictive maintenance. Some of the challenges highlighted in the literature are the cost and difficulty of obtaining labelled samples for training. Novelty detection is a branch of machine learning that after being trained on normal operations detects if new data comes from the same process or is different, eliminating the requirement to label data points. This thesis applies novelty detection to both a public data set and one that was specifically collected to demonstrate a its application to predictive maintenance. The Local Optimization Factor showed better performance than a One-Class SVM on the public data. It was then applied to data from a 3-D printer and was able to detect faults it had not been trained on showing a slight lift from a random classifier

    Artificial intelligence in construction asset management: a review of present status, challenges and future opportunities

    Get PDF
    The built environment is responsible for roughly 40% of global greenhouse emissions, making the sector a crucial factor for climate change and sustainability. Meanwhile, other sectors (like manufacturing) adopted Artificial Intelligence (AI) to solve complex, non-linear problems to reduce waste, inefficiency, and pollution. Therefore, many research efforts in the Architecture, Engineering, and Construction community have recently tried introducing AI into building asset management (AM) processes. Since AM encompasses a broad set of disciplines, an overview of several AI applications, current research gaps, and trends is needed. In this context, this study conducted the first state-of-the-art research on AI for building asset management. A total of 578 papers were analyzed with bibliometric tools to identify prominent institutions, topics, and journals. The quantitative analysis helped determine the most researched areas of AM and which AI techniques are applied. The areas were furtherly investigated by reading in-depth the 83 most relevant studies selected by screening the articles’ abstracts identified in the bibliometric analysis. The results reveal many applications for Energy Management, Condition assessment, Risk management, and Project management areas. Finally, the literature review identified three main trends that can be a reference point for future studies made by practitioners or researchers: Digital Twin, Generative Adversarial Networks (with synthetic images) for data augmentation, and Deep Reinforcement Learning
    corecore