3 research outputs found

    Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression

    Get PDF
    Seizures are a common symptom of this neurological condition, which is caused by the discharge of brain nerve cells at an excessively fast rate. Chaos, nonlinearity, and other nonlinearities are common features of scalp and intracranial Electroencephalogram (EEG) data recorded in clinics. EEG signals that aren't immediately evident are challenging to categories because of their complexity. The Gradient Boost Decision Tree (GBDT) classifier was used to classify the majority of the EEG signal segments automatically. According to this study, the Hurst exponent, in combination with AFA, is an efficient way to identify epileptic signals. As with any fractal analysis approach, there are problems and factors to keep in mind, such as identifying whether or not linear scaling areas are present. These signals were classified as either epileptic or non-epileptic by using a combination of GBDT and a Support Vector Regression (SVR). The combined method's identification accuracy was 98.23%. This study sheds light on the effectiveness of AFA feature extraction and GBDT classifiers in EEG classification. The findings can be utilized to develop theoretical guidance for the clinical identification and prediction of epileptic EEG signals. Doi: 10.28991/ESJ-2022-06-01-011 Full Text: PD

    A Modified Gated Recurrent Unit Approach for Epileptic Electroencephalography Classification

    Get PDF
    Epilepsy is one of the most severe non-communicable brain disorders associated with sudden attacks. Electroencephalography (EEG), a non-invasive technique, records brain activities, and these recordings are routinely used for the clinical evaluation of epilepsy. EEG signal analysis for seizure identification relies on expert manual examination, which is labour-intensive, time-consuming, and prone to human error. To overcome these limitations, researchers have proposed machine learning and deep learning approaches. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have shown significant results in automating seizure prediction, but due to complex gated mechanisms and the storage of excessive redundant information, these approaches face slow convergence and a low learning rate. The proposed modified GRU approach includes an improved update gate unit that adjusts the update gate based on the output of the reset gate. By decreasing the amount of superfluous data in the reset gate, convergence is speeded, which improves both learning efficiency and the accuracy of epilepsy seizure prediction. The performance of the proposed approach is verified on a publicly available epileptic EEG dataset collected from the University of California, Irvine machine learning repository (UCI) in terms of performance metrics such as accuracy, precision, recall, and F1 score when it comes to diagnosing epileptic seizures. The proposed modified GRU has obtained 98.84% accuracy, 96.9% precision, 97.1 recall, and 97% F1 score. The performance results are significant because they could enhance the diagnosis and treatment of neurological disorders, leading to better patient outcomes
    corecore