663 research outputs found

    Prediction of Reynolds Stresses in High-Mach-Number Turbulent Boundary Layers using Physics-Informed Machine Learning

    Full text link
    Modeled Reynolds stress is a major source of model-form uncertainties in Reynolds-averaged Navier-Stokes (RANS) simulations. Recently, a physics-informed machine-learning (PIML) approach has been proposed for reconstructing the discrepancies in RANS-modeled Reynolds stresses. The merits of the PIML framework has been demonstrated in several canonical incompressible flows. However, its performance on high-Mach-number flows is still not clear. In this work we use the PIML approach to predict the discrepancies in RANS modeled Reynolds stresses in high-Mach-number flat-plate turbulent boundary layers by using an existing DNS database. Specifically, the discrepancy function is first constructed using a DNS training flow and then used to correct RANS-predicted Reynolds stresses under flow conditions different from the DNS. The machine-learning technique is shown to significantly improve RANS-modeled turbulent normal stresses, the turbulent kinetic energy, and the Reynolds-stress anisotropy. Improvements are consistently observed when different training datasets are used. Moreover, a high-dimensional visualization technique and distance metrics are used to provide a priori assessment of prediction confidence based only on RANS simulations. This study demonstrates that the PIML approach is a computationally affordable technique for improving the accuracy of RANS-modeled Reynolds stresses for high-Mach-number turbulent flows when there is a lack of experiments and high-fidelity simulations.Comment: 28 pages, 12 figure

    Assessment of Neural Network Augmented Reynolds Averaged Navier Stokes Turbulence Model in Extrapolation Modes

    Full text link
    A machine-learned (ML) model is developed to enhance the accuracy of turbulence transport equations of Reynolds Averaged Navier Stokes (RANS) solver and applied for periodic hill test case, which involves complex flow regimes, such as attached boundary layer, shear-layer, and separation and reattachment. The accuracy of the model is investigated in extrapolation modes, i.e., the test case has much larger separation bubble and higher turbulence than the training cases. A parametric study is also performed to understand the effect of network hyperparameters on training and model accuracy and to quantify the uncertainty in model accuracy due to the non-deterministic nature of the neural network training. The study revealed that, for any network, less than optimal mini-batch size results in overfitting, and larger than optimal batch size reduces accuracy. Data clustering is found to be an efficient approach to prevent the machine-learned model from over-training on more prevalent flow regimes, and results in a model with similar accuracy using almost one-third of the training dataset. Feature importance analysis reveals that turbulence production is correlated with shear strain in the free-shear region, with shear strain and wall-distance and local velocity-based Reynolds number in the boundary layer regime, and with streamwise velocity gradient in the accelerating flow regime. The flow direction is found to be key in identifying flow separation and reattachment regime. Machine-learned models perform poorly in extrapolation mode, wherein the prediction shows less than 10% correlation with Direct Numerical Simulation (DNS). A priori tests reveal that model predictability improves significantly as the hill dataset is partially added during training in a partial extrapolation model, e.g., with the addition of only 5% of the hill data increases correlation with DNS to 80%.Comment: 50 pages, 18 figure

    Evaluation of physics constrained data-driven methods for turbulence model uncertainty quantification

    Full text link
    In order to achieve a virtual certification process and robust designs for turbomachinery, the uncertainty bounds for Computational Fluid Dynamics have to be known. The formulation of turbulence closure models implies a major source of the overall uncertainty of Reynolds-averaged Navier-Stokes simulations. We discuss the common practice of applying a physics constrained eigenspace perturbation of the Reynolds stress tensor in order to account for the model form uncertainty of turbulence models. Since the basic methodology often leads to overly generous uncertainty estimates, we extend a recent approach of adding a machine learning strategy. The application of a data-driven method is motivated by striving for the detection of flow regions, which are prone to suffer from a lack of turbulence model prediction accuracy. In this way any user input related to choosing the degree of uncertainty is supposed to become obsolete. This work especially investigates an approach, which tries to determine an a priori estimation of prediction confidence, when there is no accurate data available to judge the prediction. The flow around the NACA 4412 airfoil at near-stall conditions demonstrates the successful application of the data-driven eigenspace perturbation framework. Furthermore, we especially highlight the objectives and limitations of the underlying methodology

    RANS Turbulence Model Development using CFD-Driven Machine Learning

    Full text link
    This paper presents a novel CFD-driven machine learning framework to develop Reynolds-averaged Navier-Stokes (RANS) models. The CFD-driven training is an extension of the gene expression programming method (Weatheritt and Sandberg, 2016), but crucially the fitness of candidate models is now evaluated by running RANS calculations in an integrated way, rather than using an algebraic function. Unlike other data-driven methods that fit the Reynolds stresses of trained models to high-fidelity data, the cost function for the CFD-driven training can be defined based on any flow feature from the CFD results. This extends the applicability of the method especially when the training data is limited. Furthermore, the resulting model, which is the one providing the most accurate CFD results at the end of the training, inherently shows good performance in RANS calculations. To demonstrate the potential of this new method, the CFD-driven machine learning approach is applied to model development for wake mixing in turbomachines. A new model is trained based on a high-pressure turbine case and then tested for three additional cases, all representative of modern turbine nozzles. Despite the geometric configurations and operating conditions being different among the cases, the predicted wake mixing profiles are significantly improved in all of these a posteriori tests. Moreover, the model equation is explicitly given and available for analysis, thus it could be deduced that the enhanced wake prediction is predominantly due to the extra diffusion introduced by the CFD-driven model.Comment: Accepted by Journal of Computational Physic
    • …
    corecore