111 research outputs found

    DeepLOB: Deep Convolutional Neural Networks for Limit Order Books

    Get PDF
    We develop a large-scale deep learning model to predict price movements from limit order book (LOB) data of cash equities. The architecture utilises convolutional filters to capture the spatial structure of the limit order books as well as LSTM modules to capture longer time dependencies. The proposed network outperforms all existing state-of-the-art algorithms on the benchmark LOB dataset [1]. In a more realistic setting, we test our model by using one year market quotes from the London Stock Exchange and the model delivers a remarkably stable out-of-sample prediction accuracy for a variety of instruments. Importantly, our model translates well to instruments which were not part of the training set, indicating the model's ability to extract universal features. In order to better understand these features and to go beyond a "black box" model, we perform a sensitivity analysis to understand the rationale behind the model predictions and reveal the components of LOBs that are most relevant. The ability to extract robust features which translate well to other instruments is an important property of our model which has many other applications.Comment: 12 pages, 9 figure

    Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators

    Get PDF
    This study explores the suitability of neural networks with a convolutional component as an alternative to traditional multilayer perceptrons in the domain of trend classification of cryptocurrency exchange rates using technical analysis in high frequencies. The experimental work compares the performance of four different network architectures -convolutional neural network, hybrid CNN-LSTM network, multilayer perceptron and radial basis function neural network- to predict whether six popular cryptocurrencies -Bitcoin, Dash, Ether, Litecoin, Monero and Ripple- will increase their value vs. USD in the next minute. The results, based on 18 technical indicators derived from the exchange rates at a one-minute resolution over one year, suggest that all series were predictable to a certain extent using the technical indicators. Convolutional LSTM neural networks outperformed all the rest significantly, while CNN neural networks were also able to provide good results specially in the Bitcoin, Ether and Litecoin cryptocurrencies.We would also like to acknowledge the financial support of the Spanish Ministry of Science, Innovation and Universities under grant PGC2018-096849-B-I00 (MCFin

    Algorithms in future capital markets: A survey on AI, ML and associated algorithms in capital markets

    Get PDF
    This paper reviews Artificial Intelligence (AI), Machine Learning (ML) and associated algorithms in future Capital Markets. New AI algorithms are constantly emerging, with each 'strain' mimicking a new form of human learning, reasoning, knowledge, and decisionmaking. The current main disrupting forms of learning include Deep Learning, Adversarial Learning, Transfer and Meta Learning. Albeit these modes of learning have been in the AI/ML field more than a decade, they now are more applicable due to the availability of data, computing power and infrastructure. These forms of learning have produced new models (e.g., Long Short-Term Memory, Generative Adversarial Networks) and leverage important applications (e.g., Natural Language Processing, Adversarial Examples, Deep Fakes, etc.). These new models and applications will drive changes in future Capital Markets, so it is important to understand their computational strengths and weaknesses. Since ML algorithms effectively self-program and evolve dynamically, financial institutions and regulators are becoming increasingly concerned with ensuring there remains a modicum of human control, focusing on Algorithmic Interpretability/Explainability, Robustness and Legality. For example, the concern is that, in the future, an ecology of trading algorithms across different institutions may 'conspire' and become unintentionally fraudulent (cf. LIBOR) or subject to subversion through compromised datasets (e.g. Microsoft Tay). New and unique forms of systemic risks can emerge, potentially coming from excessive algorithmic complexity. The contribution of this paper is to review AI, ML and associated algorithms, their computational strengths and weaknesses, and discuss their future impact on the Capital Markets

    WATTNet: Learning to Trade FX via Hierarchical Spatio-Temporal Representation of Highly Multivariate Time Series

    Full text link
    Finance is a particularly challenging application area for deep learning models due to low noise-to-signal ratio, non-stationarity, and partial observability. Non-deliverable-forwards (NDF), a derivatives contract used in foreign exchange (FX) trading, presents additional difficulty in the form of long-term planning required for an effective selection of start and end date of the contract. In this work, we focus on tackling the problem of NDF tenor selection by leveraging high-dimensional sequential data consisting of spot rates, technical indicators and expert tenor patterns. To this end, we construct a dataset from the Depository Trust & Clearing Corporation (DTCC) NDF data that includes a comprehensive list of NDF volumes and daily spot rates for 64 FX pairs. We introduce WaveATTentionNet (WATTNet), a novel temporal convolution (TCN) model for spatio-temporal modeling of highly multivariate time series, and validate it across NDF markets with varying degrees of dissimilarity between the training and test periods in terms of volatility and general market regimes. The proposed method achieves a significant positive return on investment (ROI) in all NDF markets under analysis, outperforming recurrent and classical baselines by a wide margin. Finally, we propose two orthogonal interpretability approaches to verify noise stability and detect the driving factors of the learned tenor selection strategy.Comment: Submitted to the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 20

    Techniques for Stock Market Prediction: A Review

    Get PDF
    Stock market forecasting has long been viewed as a vital real-life topic in economics world. There are many challenges in stock market prediction systems such as the Efficient Market Hypothesis (EMH), Nonlinearity, complex, diverse datasets, and parameter optimization. A stock's value on the stock market fluctuates due to many factors like previous trends of the stock, the current news, twitter feeds, any online customer feedbacks etc. In this paper, the literature is critically analysed on approaches used for stock market prediction in terms of stock datasets, features used, evaluation metrics used, statistical, machine learning and deep learning techniques along with the directions for the future. The focus of this review is on trend and value prediction for stocks. Overall, 68 research papers have been considered for review from years 1998-2023. From the review, Indian stock market datasets are found to be most frequently used datasets. Evaluation metrics used commonly are accuracy and Mean Absolute Percentage Error. ARIMA is reported as the most used frequently statistical technique for stick market prediction. Long-Short Term Memory and Support Vector Machine are the commonly used algorithms in stock market prediction. The advantages and disadvantages of frequently used evaluation metrics, machine learning, deep learning and statistical approaches are also included in this survey
    • …
    corecore