74 research outputs found

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    Transformation-Invariant Analysis of Visual Signals with Parametric Models

    Get PDF
    The analysis of collections of visual data, e.g., their classification, modeling and clustering, has become a problem of high importance in a variety of applications. Meanwhile, image data captured in uncontrolled environments by arbitrary users is very likely to be exposed to geometric transformations. Therefore, efficient methods are needed for analyzing high-dimensional visual data sets that can cope with geometric transformations of the visual content of interest. In this thesis, we study parametric models for transformation-invariant analysis of geometrically transformed image data, which provide low-dimensional image representations that capture relevant information efficiently. We focus on transformation manifolds, which are image sets created by parametrizable geometric transformations of a reference image model. Transformation manifolds provide a geometric interpretation of several image analysis problems. In particular, image registration corresponds to the computation of the projection of the target image onto the transformation manifold of the reference image. Similarly, in classification, the class label of a query image can be estimated in a transformation-invariant way by comparing its distance to transformation manifolds that represent different image classes. In this thesis, we explore several problems related to the registration, modeling, and classification of images with transformation manifolds. First, we address the problem of sampling transformation manifolds of known parameterization, where we focus on the target applications of image registration and classification in the sampling. We first propose an iterative algorithm for sampling a manifold such that the selected set of samples gives an accurate estimate of the distance of a query image to the manifold. We then extend this method to a classification setting with several transformation manifolds representing different image classes. We develop an algorithm to jointly sample multiple transformation manifolds such that the class label of query images can be estimated accurately by comparing their distances to the class-representative manifold samples. The proposed methods outperform baseline sampling schemes in image registration and classification. Next, we study the problem of learning transformation manifolds that are good models of a given set of geometrically transformed image data. We first learn a representative pattern whose transformation manifold fits well the input images and then generalize the problem to a supervised classification setting, where we jointly learn multiple class-representative pattern transformation manifolds from training images with known class labels. The proposed manifold learning methods exploit the information of the type of the geometric transformation in the data to compute an accurate data model, which is ignored in previous manifold learning algorithms. Finally, we focus on the usage of transformation manifolds in multiscale image registration. We consider two different methods in image registration, namely, the tangent distance method and the minimization of the image intensity difference with gradient descent. We present a multiscale performance analysis of these methods. We derive upper bounds for the alignment errors yielded by the two methods and analyze the variations of these bounds with noise and low-pass filtering, which is useful for gaining an understanding of the performance of these methods in image registration. To the best of our knowledge, these are the first such studies in multiscale registration settings. Geometrically transformed image sets have a particular structure, and classical image analysis methods do not always suit well for the treatment of such data. This thesis is motivated by this observation and proposes new techniques and insights for handling geometric transformations in image analysis and processing

    Policy evaluation with temporal differences: a survey and comparison

    Get PDF
    Policy evaluation is an essential step in most reinforcement learning approaches. It yields a value function, the quality assessment of states for a given policy, which can be used in a policy improvement step. Since the late 1980s, this research area has been dominated by temporal-difference (TD) methods due to their data-efficiency. However, core issues such as stability guarantees in the off-policy scenario, improved sample efficiency and probabilistic treatment of the uncertainty in the estimates have only been tackled recently, which has led to a large number of new approaches. This paper aims at making these new developments accessible in a concise overview, with foci on underlying cost functions, the off-policy scenario as well as on regularization in high dimensional feature spaces. By presenting the first extensive, systematic comparative evaluations comparing TD, LSTD, LSPE, FPKF, the residual- gradient algorithm, Bellman residual minimization, GTD, GTD2 and TDC, we shed light on the strengths and weaknesses of the methods. Moreover, we present alternative versions of LSTD and LSPE with drastically improved off-policy performance

    Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning

    Full text link
    Many applications, e.g., in shared mobility, require coordinating a large number of agents. Mean-field reinforcement learning addresses the resulting scalability challenge by optimizing the policy of a representative agent. In this paper, we address an important generalization where there exist global constraints on the distribution of agents (e.g., requiring capacity constraints or minimum coverage requirements to be met). We propose Safe-M3\text{M}^3-UCRL, the first model-based algorithm that attains safe policies even in the case of unknown transition dynamics. As a key ingredient, it uses epistemic uncertainty in the transition model within a log-barrier approach to ensure pessimistic constraints satisfaction with high probability. We showcase Safe-M3\text{M}^3-UCRL on the vehicle repositioning problem faced by many shared mobility operators and evaluate its performance through simulations built on Shenzhen taxi trajectory data. Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.Comment: 25 pages, 14 figures, 3 table
    • …
    corecore