215 research outputs found

    Dirichlet latent variable model : a dynamic model based on Dirichlet prior for audio processing

    Get PDF
    We propose a dynamic latent variable model for learning latent bases from time varying, non-negative data. We take a probabilistic approach to modeling the temporal dependence in data by introducing a dynamic Dirichlet prior – a Dirichlet distribution with dynamic parameters. This new distribution allows us to assure non-negativity and avoid intractability when sequential updates are performed (otherwise encountered in using Dirichlet prior). We refer to the proposed model as the Dirichlet latent variable model (DLVM). We develop an expectation maximization algorithm for the proposed model, and also derive a maximum a posteriori estimate of the parameters. Furthermore, we connect the proposed DLVM to two popular latent basis learning methods - probabilistic latent component analysis (PLCA) and non-negative matrix factorization (NMF).We show that (i) PLCA is a special case of our DLVM, and (ii) DLVM can be interpreted as a dynamic version of NMF. The usefulness of DLVM is demonstrated for three audio processing applications - speaker source separation, denoising, and bandwidth expansion. To this end, a new algorithm for source separation is also proposed. Through extensive experiments on benchmark databases, we show that the proposed model out performs several relevant existing methods in all three applications

    A dynamic latent variable model for source separation

    Get PDF
    We propose a novel latent variable model for learning latent bases for time-varying non-negative data. Our model uses a mixture multinomial as the likelihood function and proposes a Dirichlet distribution with dynamic parameters as a prior, which we call the dynamic Dirichlet prior. An expectation maximization (EM) algorithm is developed for estimating the parameters of the proposed model. Furthermore, we connect our proposed dynamic Dirichlet latent variable model (dynamic DLVM) to the two popular latent basis learning methods - probabilistic latent component analysis (PLCA) and non-negative matrix factorization (NMF). We show that (i) PLCA is a special case of the dynamic DLVM, and (ii) dynamic DLVM can be interpreted as a dynamic version of NMF. The effectiveness of the proposed model is demonstrated through extensive experiments on speaker source separation, and speech-noise separation. In both cases, our method performs better than relevant and competitive baselines. For speaker separation, dynamic DLVM shows 1.38 dB improvement in terms of source to interference ratio, and 1 dB improvement in source to artifact ratio

    Probabilistic sequential matrix factorization

    Get PDF
    We introduce the probabilistic sequential matrix factorization (PSMF) method for factorizing time-varying and non-stationary datasets consisting of high-dimensional time-series. In particular, we consider nonlinear Gaussian state-space models where sequential approximate inference results in the factorization of a data matrix into a dictionary and time-varying coefficients with potentially nonlinear Markovian dependencies. The assumed Markovian structure on the coefficients enables us to encode temporal dependencies into a low-dimensional feature space. The proposed inference method is solely based on an approximate extended Kalman filtering scheme, which makes the resulting method particularly efficient. PSMF can account for temporal nonlinearities and, more importantly, can be used to calibrate and estimate generic differentiable nonlinear subspace models. We also introduce a robust version of PSMF, called rPSMF, which uses Student-t filters to handle model misspecification. We show that PSMF can be used in multiple contexts: modeling time series with a periodic subspace, robustifying changepoint detection methods, and imputing missing data in several high-dimensional time-series, such as measurements of pollutants across London.Comment: Accepted for publication at AISTATS 202

    A State-Space Approach to Dynamic Nonnegative Matrix Factorization

    Full text link

    Modeling High-Dimensional Audio Sequences with Recurrent Neural Networks

    Get PDF
    Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.This thesis studies models of high-dimensional sequences based on recurrent neural networks (RNNs) and their application to music and speech. While in principle RNNs can represent the long-term dependencies and complex temporal dynamics present in real-world sequences such as video, audio and natural language, they have not been used to their full potential since their introduction by Rumelhart et al. (1986a) due to the difficulty to train them efficiently by gradient-based optimization. In recent years, the successful application of Hessian-free optimization and other advanced training techniques motivated an increase of their use in many state-of-the-art systems. The work of this thesis is part of this development. The main idea is to exploit the power of RNNs to learn a probabilistic description of sequences of symbols, i.e. high-level information associated with observed signals, that in turn can be used as a prior to improve the accuracy of information retrieval. For example, by modeling the evolution of note patterns in polyphonic music, chords in a harmonic progression, phones in a spoken utterance, or individual sources in an audio mixture, we can improve significantly the accuracy of polyphonic transcription, chord recognition, speech recognition and audio source separation respectively. The practical application of our models to these tasks is detailed in the last four articles presented in this thesis. In the first article, we replace the output layer of an RNN with conditional restricted Boltzmann machines to describe much richer multimodal output distributions. In the second article, we review and develop advanced techniques to train RNNs. In the last four articles, we explore various ways to combine our symbolic models with deep networks and non-negative matrix factorization algorithms, namely using products of experts, input/output architectures, and generative frameworks that generalize hidden Markov models. We also propose and analyze efficient inference procedures for those models, such as greedy chronological search, high-dimensional beam search, dynamic programming-like pruned beam search and gradient descent. Finally, we explore issues such as label bias, teacher forcing, temporal smoothing, regularization and pre-training

    Probabilistic sequential matrix factorization

    Get PDF
    We introduce the probabilistic sequential matrix factorization (PSMF) method for factorizing time-varying and non-stationary datasets consisting of high-dimensional time-series. In particular, we consider nonlinear Gaussian state-space models where sequential approximate inference results in the factorization of a data matrix into a dictionary and time-varying coefficients with potentially nonlinear Markovian dependencies. The assumed Markovian structure on the coefficients enables us to encode temporal dependencies into a low-dimensional feature space. The proposed inference method is solely based on an approximate extended Kalman filtering scheme, which makes the resulting method particularly efficient. PSMF can account for temporal nonlinearities and, more importantly, can be used to calibrate and estimate generic differentiable nonlinear subspace models. We also introduce a robust version of PSMF, called rPSMF, which uses Student-t filters to handle model misspecification. We show that PSMF can be used in multiple contexts: modeling time series with a periodic subspace, robustifying changepoint detection methods, and imputing missing data in several high-dimensional time-series, such as measurements of pollutants across London
    corecore