53,852 research outputs found

    Log file analysis for disengagement detection in e-Learning environments

    Get PDF

    Predicting Human Cooperation

    Full text link
    The Prisoner's Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner's Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner's Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner's Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner's Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The computational model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is extremely successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation.Comment: Added references. New inline citation style. Added small portions of text. Re-compiled Rmarkdown file with updated ggplot2 so small aesthetic changes to plot

    Implicit Measures of Lostness and Success in Web Navigation

    Get PDF
    In two studies, we investigated the ability of a variety of structural and temporal measures computed from a web navigation path to predict lostness and task success. The user’s task was to find requested target information on specified websites. The web navigation measures were based on counts of visits to web pages and other statistical properties of the web usage graph (such as compactness, stratum, and similarity to the optimal path). Subjective lostness was best predicted by similarity to the optimal path and time on task. The best overall predictor of success on individual tasks was similarity to the optimal path, but other predictors were sometimes superior depending on the particular web navigation task. These measures can be used to diagnose user navigational problems and to help identify problems in website design
    • …
    corecore