218 research outputs found

    Advances of Machine Learning in Materials Science: Ideas and Techniques

    Full text link
    In this big data era, the use of large dataset in conjunction with machine learning (ML) has been increasingly popular in both industry and academia. In recent times, the field of materials science is also undergoing a big data revolution, with large database and repositories appearing everywhere. Traditionally, materials science is a trial-and-error field, in both the computational and experimental departments. With the advent of machine learning-based techniques, there has been a paradigm shift: materials can now be screened quickly using ML models and even generated based on materials with similar properties; ML has also quietly infiltrated many sub-disciplinary under materials science. However, ML remains relatively new to the field and is expanding its wing quickly. There are a plethora of readily-available big data architectures and abundance of ML models and software; The call to integrate all these elements in a comprehensive research procedure is becoming an important direction of material science research. In this review, we attempt to provide an introduction and reference of ML to materials scientists, covering as much as possible the commonly used methods and applications, and discussing the future possibilities.Comment: 80 pages; 22 figures. To be published in Frontiers of Physics, 18, xxxxx, (2023

    Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering

    Full text link
    Recently, there has been extensive use of artificial Intelligence (AI) in the field of material engineering. This can be attributed to the development of high performance computing and thereby feasibility to test deep learning models with large parameters. In this article we tried to review some of the latest developments in the applications of AI in material engineering.Comment: V

    Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus Ab Initio Methods

    Full text link
    Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71,178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.Comment: 11 pages, 5 figures, 2 table

    Leveraging Language Representation for Material Recommendation, Ranking, and Exploration

    Full text link
    Data-driven approaches for material discovery and design have been accelerated by emerging efforts in machine learning. While there is enormous progress towards learning the structure to property relationship of materials, methods that allow for general representations of crystals to effectively explore the vast material search space and identify high-performance candidates remain limited. In this work, we introduce a material discovery framework that uses natural language embeddings derived from material science-specific language models as representations of compositional and structural features. The discovery framework consists of a joint scheme that, given a query material, first recalls candidates based on representational similarity, and ranks the candidates based on target properties through multi-task learning. The contextual knowledge encoded in language representations is found to convey information about material properties and structures, enabling both similarity analysis for recall, and multi-task learning to share information for related properties. By applying the discovery framework to thermoelectric materials, we demonstrate diversified recommendations of prototype structures and identify under-studied high-performance material spaces, including halide perovskite, delafossite-like, and spinel-like structures. By leveraging material language representations, our framework provides a generalized means for effective material recommendation, which is task-agnostic and can be applied to various material systems

    Predicting Thermoelectric Transport Properties from Composition with Attention-based Deep Learning

    Get PDF
    Thermoelectric materials can be used to construct devices which recycle waste heat into electricity. However, the best known thermoelectrics are based on rare, expensive or even toxic elements, which limits their widespread adoption. To enable deployment on global scales, new classes of effective thermoelectrics are thus required. Ab initio\textit{Ab initio} models of transport properties can help in the design of new thermoelectrics, but they are still too computationally expensive to be solely relied upon for high-throughput screening in the vast chemical space of all possible candidates. Here, we use models constructed with modern machine learning techniques to scan very large areas of inorganic materials space for novel thermoelectrics, using composition as an input. We employ an attention-based deep learning model, trained on data derived from ab initio\textit{ab initio} calculations, to predict a material's Seebeck coefficient, electrical conductivity, and power factor over a range of temperatures and n\textit{n}- or p\textit{p}-type doping levels, with surprisingly good performance given the simplicity of the input, and with significantly lower computational cost. The results of applying the model to a space of known and hypothetical binary and ternary selenides reveal several materials that may represent promising thermoelectrics. Our study establishes a protocol for composition-based prediction of thermoelectric behaviour that can be easily enhanced as more accurate theoretical or experimental databases become available

    The 2019 materials by design roadmap

    Get PDF
    Advances in renewable and sustainable energy technologies critically depend on our ability to design and realize materials with optimal properties. Materials discovery and design efforts ideally involve close coupling between materials prediction, synthesis and characterization. The increased use of computational tools, the generation of materials databases, and advances in experimental methods have substantially accelerated these activities. It is therefore an opportune time to consider future prospects for materials by design approaches. The purpose of this Roadmap is to present an overview of the current state of computational materials prediction, synthesis and characterization approaches, materials design needs for various technologies, and future challenges and opportunities that must be addressed. The various perspectives cover topics on computational techniques, validation, materials databases, materials informatics, high-throughput combinatorial methods, advanced characterization approaches, and materials design issues in thermoelectrics, photovoltaics, solid state lighting, catalysts, batteries, metal alloys, complex oxides and transparent conducting materials. It is our hope that this Roadmap will guide researchers and funding agencies in identifying new prospects for materials design

    Atomistic Line Graph Neural Network for Improved Materials Property Predictions

    Full text link
    Graph neural networks (GNN) have been shown to provide substantial performance improvements for representing and modeling atomistic materials compared with descriptor-based machine-learning models. While most existing GNN models for atomistic predictions are based on atomic distance information, they do not explicitly incorporate bond angles, which are critical for distinguishing many atomic structures. Furthermore, many material properties are known to be sensitive to slight changes in bond angles. We present an Atomistic Line Graph Neural Network (ALIGNN), a GNN architecture that performs message passing on both the interatomic bond graph and its line graph corresponding to bond angles. We demonstrate that angle information can be explicitly and efficiently included, leading to improved performance on multiple atomistic prediction tasks. We use ALIGNN models for predicting 52 solid-state and molecular properties available in the JARVIS-DFT, Materials project, and QM9 databases. ALIGNN can outperform some previously reported GNN models on atomistic prediction tasks by up to 85 % in accuracy with better or comparable model training speed

    Recent progress in the JARVIS infrastructure for next-generation data-driven materials design

    Full text link
    The Joint Automated Repository for Various Integrated Simulations (JARVIS) infrastructure at the National Institute of Standards and Technology (NIST) is a large-scale collection of curated datasets and tools with more than 80000 materials and millions of properties. JARVIS uses a combination of electronic structure, artificial intelligence (AI), advanced computation and experimental methods to accelerate materials design. Here we report some of the new features that were recently included in the infrastructure such as: 1) doubling the number of materials in the database since its first release, 2) including more accurate electronic structure methods such as Quantum Monte Carlo, 3) including graph neural network-based materials design, 4) development of unified force-field, 5) development of a universal tight-binding model, 6) addition of computer-vision tools for advanced microscopy applications, 7) development of a natural language processing tool for text-generation and analysis, 8) debuting a large-scale benchmarking endeavor, 9) including quantum computing algorithms for solids, 10) integrating several experimental datasets and 11) staging several community engagement and outreach events. New classes of materials, properties, and workflows added to the database include superconductors, two-dimensional (2D) magnets, magnetic topological materials, metal-organic frameworks, defects, and interface systems. The rich and reliable datasets, tools, documentation, and tutorials make JARVIS a unique platform for modern materials design. JARVIS ensures openness of data and tools to enhance reproducibility and transparency and to promote a healthy and collaborative scientific environment
    • …
    corecore