12,867 research outputs found

    Predicting the popularity of Web 2.0 items based on user comments

    Get PDF
    National Research Foundation (NRF) Singapore under its International Research Centre @ Singapore Funding Initiativ

    Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks

    Full text link
    Prediction of popularity has profound impact for social media, since it offers opportunities to reveal individual preference and public attention from evolutionary social systems. Previous research, although achieves promising results, neglects one distinctive characteristic of social data, i.e., sequentiality. For example, the popularity of online content is generated over time with sequential post streams of social media. To investigate the sequential prediction of popularity, we propose a novel prediction framework called Deep Temporal Context Networks (DTCN) by incorporating both temporal context and temporal attention into account. Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new user-post pair) with temporal coherence across multiple time-scales. Experiments on our released image dataset with about 600K Flickr photos demonstrate that DTCN outperforms state-of-the-art deep prediction algorithms, with an average of 21.51% relative performance improvement in the popularity prediction (Spearman Ranking Correlation).Comment: accepted in IJCAI-1

    Finding Influential Users in Social Media Using Association Rule Learning

    Full text link
    Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods

    Fast Matrix Factorization for Online Recommendation with Implicit Feedback

    Full text link
    This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data. We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our eALS method consistently outperforms state-of-the-art implicit MF methods. Our implementation is available at https://github.com/hexiangnan/sigir16-eals.Comment: 10 pages, 8 figure

    Distilling Information Reliability and Source Trustworthiness from Digital Traces

    Full text link
    Online knowledge repositories typically rely on their users or dedicated editors to evaluate the reliability of their content. These evaluations can be viewed as noisy measurements of both information reliability and information source trustworthiness. Can we leverage these noisy evaluations, often biased, to distill a robust, unbiased and interpretable measure of both notions? In this paper, we argue that the temporal traces left by these noisy evaluations give cues on the reliability of the information and the trustworthiness of the sources. Then, we propose a temporal point process modeling framework that links these temporal traces to robust, unbiased and interpretable notions of information reliability and source trustworthiness. Furthermore, we develop an efficient convex optimization procedure to learn the parameters of the model from historical traces. Experiments on real-world data gathered from Wikipedia and Stack Overflow show that our modeling framework accurately predicts evaluation events, provides an interpretable measure of information reliability and source trustworthiness, and yields interesting insights about real-world events.Comment: Accepted at 26th World Wide Web conference (WWW-17
    • …
    corecore