231 research outputs found

    Automatic Dream Sentiment Analysis

    Get PDF
    In this position paper, we propose a first step toward automatic analysis of sentiments in dreams. 100 dreams were sampled from a dream bank created for a normative study of dreams. Two human judges assigned a score to describe dream sentiments. We ran four baseline algorithms in an attempt to automate the rating of sentiments in dreams. Particularly, we compared the General Inquirer (GI) tool, the Linguistic Inquiry and Word Count (LIWC), a weighted version of the GI lexicon and of the HM lexicon and a standard bag-of-words. We show that machine learning allows automating the human judgment with accuracy superior to majority class choice

    Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word Corpus

    Get PDF
    The evaluative character of a word is called its semantic orientation. A positive semantic orientation implies desirability (e.g., "honest", "intrepid") and a negative semantic orientation implies undesirability (e.g., "disturbing", "superfluous"). This paper introduces a simple algorithm for unsupervised learning of semantic orientation from extremely large corpora. The method involves issuing queries to a Web search engine and using pointwise mutual information to analyse the results. The algorithm is empirically evaluated using a training corpus of approximately one hundred billion words — the subset of the Web that is indexed by the chosen search engine. Tested with 3,596 words (1,614 positive and 1,982 negative), the algorithm attains an accuracy of 80%. The 3,596 test words include adjectives, adverbs, nouns, and verbs. The accuracy is comparable with the results achieved by Hatzivassiloglou and McKeown (1997), using a complex four-stage supervised learning algorithm that is restricted to determining the semantic orientation of adjectives

    Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews

    Get PDF
    This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A phrase has a positive semantic orientation when it has good associations (e.g., "subtle nuances") and a negative semantic orientation when it has bad associations (e.g., "very cavalier"). In this paper, the semantic orientation of a phrase is calculated as the mutual information between the given phrase and the word "excellent" minus the mutual information between the given phrase and the word "poor". A review is classified as recommended if the average semantic orientation of its phrases is positive. The algorithm achieves an average accuracy of 74% when evaluated on 410 reviews from Epinions, sampled from four different domains (reviews of automobiles, banks, movies, and travel destinations). The accuracy ranges from 84% for automobile reviews to 66% for movie reviews

    Thumbs up? Sentiment Classification using Machine Learning Techniques

    Full text link
    We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform human-produced baselines. However, the three machine learning methods we employed (Naive Bayes, maximum entropy classification, and support vector machines) do not perform as well on sentiment classification as on traditional topic-based categorization. We conclude by examining factors that make the sentiment classification problem more challenging.Comment: To appear in EMNLP-200
    • …
    corecore