293,710 research outputs found

    Investigating the contribution of author- and publication-specific features to scholars' h-index prediction

    Get PDF
    Evaluation of researchers' output is vital for hiring committees and funding bodies, and it is usually measured via their scientific productivity, citations, or a combined metric such as h-index. Assessing young researchers is more critical because it takes a while to get citations and increment of h-index. Hence, predicting the h-index can help to discover the researchers' scientific impact. In addition, identifying the influential factors to predict the scientific impact is helpful for researchers seeking solutions to improve it. This study investigates the effect of author, paper and venue-specific features on the future h-index. For this purpose, we used machine learning methods to predict the h-index and feature analysis techniques to advance the understanding of feature impact. Utilizing the bibliometric data in Scopus, we defined and extracted two main groups of features. The first relates to prior scientific impact, and we name it 'prior impact-based features' and includes the number of publications, received citations, and h-index. The second group is 'non-impact-based features' and contains the features related to author, co-authorship, paper, and venue characteristics. We explored their importance in predicting h-index for researchers in three different career phases. Also, we examine the temporal dimension of predicting performance for different feature categories to find out which features are more reliable for long- and short-term prediction. We referred to the gender of the authors to examine the role of this author's characteristics in the prediction task. Our findings showed that gender has a very slight effect in predicting the h-index. We found that non-impact-based features are more robust predictors for younger scholars than seniors in the short term. Also, prior impact-based features lose their power to predict more than other features in the long-term.Comment: 14 pages, 1 figur

    Will This Paper Increase Your h-index? Scientific Impact Prediction

    Full text link
    Scientific impact plays a central role in the evaluation of the output of scholars, departments, and institutions. A widely used measure of scientific impact is citations, with a growing body of literature focused on predicting the number of citations obtained by any given publication. The effectiveness of such predictions, however, is fundamentally limited by the power-law distribution of citations, whereby publications with few citations are extremely common and publications with many citations are relatively rare. Given this limitation, in this work we instead address a related question asked by many academic researchers in the course of writing a paper, namely: "Will this paper increase my h-index?" Using a real academic dataset with over 1.7 million authors, 2 million papers, and 8 million citation relationships from the premier online academic service ArnetMiner, we formalize a novel scientific impact prediction problem to examine several factors that can drive a paper to increase the primary author's h-index. We find that the researcher's authority on the publication topic and the venue in which the paper is published are crucial factors to the increase of the primary author's h-index, while the topic popularity and the co-authors' h-indices are of surprisingly little relevance. By leveraging relevant factors, we find a greater than 87.5% potential predictability for whether a paper will contribute to an author's h-index within five years. As a further experiment, we generate a self-prediction for this paper, estimating that there is a 76% probability that it will contribute to the h-index of the co-author with the highest current h-index in five years. We conclude that our findings on the quantification of scientific impact can help researchers to expand their influence and more effectively leverage their position of "standing on the shoulders of giants."Comment: Proc. of the 8th ACM International Conference on Web Search and Data Mining (WSDM'15

    Predicting Scientific Success Based on Coauthorship Networks

    Full text link
    We address the question to what extent the success of scientific articles is due to social influence. Analyzing a data set of over 100000 publications from the field of Computer Science, we study how centrality in the coauthorship network differs between authors who have highly cited papers and those who do not. We further show that a machine learning classifier, based only on coauthorship network centrality measures at time of publication, is able to predict with high precision whether an article will be highly cited five years after publication. By this we provide quantitative insight into the social dimension of scientific publishing - challenging the perception of citations as an objective, socially unbiased measure of scientific success.Comment: 21 pages, 2 figures, incl. Supplementary Materia

    A framework for the measurement and prediction of an individual scientist's performance

    Full text link
    Quantitative bibliometric indicators are widely used to evaluate the performance of scientists. However, traditional indicators do not much rely on the analysis of the processes intended to measure and the practical goals of the measurement. In this study, I propose a simple framework to measure and predict an individual researcher's scientific performance that takes into account the main regularities of publication and citation processes and the requirements of practical tasks. Statistical properties of the new indicator - a scientist's personal impact rate - are illustrated by its application to a sample of Estonian researchers.Comment: 12 pages, 3 figure

    Measuring academic influence: Not all citations are equal

    Get PDF
    The importance of a research article is routinely measured by counting how many times it has been cited. However, treating all citations with equal weight ignores the wide variety of functions that citations perform. We want to automatically identify the subset of references in a bibliography that have a central academic influence on the citing paper. For this purpose, we examine the effectiveness of a variety of features for determining the academic influence of a citation. By asking authors to identify the key references in their own work, we created a data set in which citations were labeled according to their academic influence. Using automatic feature selection with supervised machine learning, we found a model for predicting academic influence that achieves good performance on this data set using only four features. The best features, among those we evaluated, were those based on the number of times a reference is mentioned in the body of a citing paper. The performance of these features inspired us to design an influence-primed h-index (the hip-index). Unlike the conventional h-index, it weights citations by how many times a reference is mentioned. According to our experiments, the hip-index is a better indicator of researcher performance than the conventional h-index
    • …
    corecore