21 research outputs found

    E.T.-RNN: Applying Deep Learning to Credit Loan Applications

    Full text link
    In this paper we present a novel approach to credit scoring of retail customers in the banking industry based on deep learning methods. We used RNNs on fine grained transnational data to compute credit scores for the loan applicants. We demonstrate that our approach significantly outperforms the baselines based on the customer data of a large European bank. We also conducted a pilot study on loan applicants of the bank, and the study produced significant financial gains for the organization. In addition, our method has several other advantages described in the paper that are very significant for the bank.Comment: KDD 201

    Default Prediction of Internet Finance Users Based on Imbalance-XGBoost

    Get PDF
    Fast and accurate identification of financial fraud is a challenge in Internet finance. Based on the characteristics of imbalanced distribution of Internet financial data, this paper integrates machine learning methods and Internet financial data to propose a prediction model for loan defaults, and proves its effectiveness and generalizability through empirical research. In this paper, we introduce a processing method (link processing method) for imbalance data based on the traditional early warning model. In this paper, we conduct experiments using the financial dataset of Lending Club platform and prove that our model is superior to XGBoost, NGBoost, Ada Boost, and GBDT in the prediction of default risk

    Credit risk modeling: A comparative analysis of artificial and deep neural networks

    Get PDF
    Credit risk assessment plays a major role in the banks and financial institutions to prevent counterparty risk failure. One of the primary capabilities of a robust risk management system must be detecting the risks earlier, though many of the bank systems today lack this key capability which leads to further losses (MGI, 2017). In searching for an improved methodology to detect such credit risk and increasing the lacking capabilities earlier, a comparative analysis between Deep Neural Network (DNN) and machine learning techniques such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN) and Artificial Neural Network (ANN) were conducted. The Deep Neural Network used in this study consists of six layers of neurons. Further, sampling techniques such as SMOTE, SVM-SMOTE, RUS, and All-KNN to make the imbalanced dataset a balanced one were also applied. Using supervised learning techniques, the proposed DNN model was able to achieve an accuracy of 82.18% with a ROC score of 0.706 using the RUS sampling technique. The All KNN sampling technique was capable of achieving the maximum true positives in two different models. Using the proposed approach, banks and credit check institutions can help prevent major losses occurring due to counterparty risk failure.credit riskdeep neural networkartificial neural networksupport vector machinessampling technique

    The AI Revolution: Opportunities and Challenges for the Finance Sector

    Full text link
    This report examines Artificial Intelligence (AI) in the financial sector, outlining its potential to revolutionise the industry and identify its challenges. It underscores the criticality of a well-rounded understanding of AI, its capabilities, and its implications to effectively leverage its potential while mitigating associated risks. The potential of AI potential extends from augmenting existing operations to paving the way for novel applications in the finance sector. The application of AI in the financial sector is transforming the industry. Its use spans areas from customer service enhancements, fraud detection, and risk management to credit assessments and high-frequency trading. However, along with these benefits, AI also presents several challenges. These include issues related to transparency, interpretability, fairness, accountability, and trustworthiness. The use of AI in the financial sector further raises critical questions about data privacy and security. A further issue identified in this report is the systemic risk that AI can introduce to the financial sector. Being prone to errors, AI can exacerbate existing systemic risks, potentially leading to financial crises. Regulation is crucial to harnessing the benefits of AI while mitigating its potential risks. Despite the global recognition of this need, there remains a lack of clear guidelines or legislation for AI use in finance. This report discusses key principles that could guide the formation of effective AI regulation in the financial sector, including the need for a risk-based approach, the inclusion of ethical considerations, and the importance of maintaining a balance between innovation and consumer protection. The report provides recommendations for academia, the finance industry, and regulators

    An approach to securitisation in Europe NPLs- machine learning model field lab project Nova SBE | moody’s analytics

    Get PDF
    As a consulting project, we were proposed to develop a neural network (NN) to predict mortgage states in one year, based on the paper ‘Deep Learning for Mortgage Risk’ by Justin A. Sirignano, Apaar Sadhwani, Kay Giesecke (2018). We developed a neural network model with the aim of being able to capture the relationships between the different variables, with respect to each other and to the response variable (the loan status in 12 months), better than traditional classification methods, such as logistic regressions, which constitute the benchmark set. Data was provided by Moody’s, relating borrower, property and loan/financing characteristics for several mortgages over several periods in time (over 350 thousand mortgages). The purpose of our model is to predict the probabilities to transition to different states at a certain point in time. The best results were obtained with a 10 layer, 500 nodes per layer network. The model can identify a large portion of defaults. At the cost, however, of a general overestimation of the default rate over the years. The capability of identifying loans that will be in arrears is also acceptable, with, again, an overestimation of the verified rate. Variables relating to borrower characteristics and history as well as financing are found to be the most significant
    corecore