5 research outputs found

    Adaptive prediction models for data center resources utilization estimation

    Get PDF
    Accurate estimation of data center resource utilization is a challenging task due to multi-tenant co-hosted applications having dynamic and time-varying workloads. Accurate estimation of future resources utilization helps in better job scheduling, workload placement, capacity planning, proactive auto-scaling, and load balancing. The inaccurate estimation leads to either under or over-provisioning of data center resources. Most existing estimation methods are based on a single model that often does not appropriately estimate different workload scenarios. To address these problems, we propose a novel method to adaptively and automatically identify the most appropriate model to accurately estimate data center resources utilization. The proposed approach trains a classifier based on statistical features of historical resources usage to decide the appropriate prediction model to use for given resource utilization observations collected during a specific time interval. We evaluated our approach on real datasets and compared the results with multiple baseline methods. The experimental evaluation shows that the proposed approach outperforms the state-of-the-art approaches and delivers 6% to 27% improved resource utilization estimation accuracy compared to baseline methods.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitiveness (TIN2015-65316-P and IJCI2016-27485), the Generalitat de Catalunya (2014-SGR-1051), and NPRP grant # NPRP9-224-1-049 from the Qatar National Research Fund (a member of Qatar Foundation) and University of the Punjab, Pakistan.Peer ReviewedPostprint (published version

    Adaptive sliding windows for improved estimation of data center resource utilization

    Get PDF
    Accurate prediction of data center resource utilization is required for capacity planning, job scheduling, energy saving, workload placement, and load balancing to utilize the resources efficiently. However, accurately predicting those resources is challenging due to dynamic workloads, heterogeneous infrastructures, and multi-tenant co-hosted applications. Existing prediction methods use fixed size observation windows which cannot produce accurate results because of not being adaptively adjusted to capture local trends in the most recent data. Therefore, those methods train on large fixed sliding windows using an irrelevant large number of observations yielding to inaccurate estimations or fall for inaccuracy due to degradation of estimations with short windows on quick changing trends. In this paper we propose a deep learning-based adaptive window size selection method, dynamically limiting the sliding window size to capture the trend for the latest resource utilization, then build an estimation model for each trend period. We evaluate the proposed method against multiple baseline and state-of-the-art methods, using real data-center workload data sets. The experimental evaluation shows that the proposed solution outperforms those state-of-the-art approaches and yields 16 to 54% improved prediction accuracy compared to the baseline methods.This work is partially supported by the European ResearchCouncil (ERC) under the EU Horizon 2020 programme(GA 639595), the Spanish Ministry of Economy, Industry andCompetitiveness (TIN2015-65316-P and IJCI2016-27485), theGeneralitat de Catalunya, Spain (2014-SGR-1051) and Universityof the Punjab, Pakistan. The statements made herein are solelythe responsibility of the authors.Peer ReviewedPostprint (published version

    Review and Classification of Bio-inspired Algorithms and Their Applications

    Get PDF
    Scientists have long looked to nature and biology in order to understand and model solutions for complex real-world problems. The study of bionics bridges the functions, biological structures and functions and organizational principles found in nature with our modern technologies, numerous mathematical and metaheuristic algorithms have been developed along with the knowledge transferring process from the lifeforms to the human technologies. Output of bionics study includes not only physical products, but also various optimization computation methods that can be applied in different areas. Related algorithms can broadly be divided into four groups: evolutionary based bio-inspired algorithms, swarm intelligence-based bio-inspired algorithms, ecology-based bio-inspired algorithms and multi-objective bio-inspired algorithms. Bio-inspired algorithms such as neural network, ant colony algorithms, particle swarm optimization and others have been applied in almost every area of science, engineering and business management with a dramatic increase of number of relevant publications. This paper provides a systematic, pragmatic and comprehensive review of the latest developments in evolutionary based bio-inspired algorithms, swarm intelligence based bio-inspired algorithms, ecology based bio-inspired algorithms and multi-objective bio-inspired algorithms
    corecore