3 research outputs found

    Predicting the need for intubation in the first 24 h after critical care admission using machine learning approaches

    Get PDF
    Early and accurate prediction of the need for intubation may provide more time for preparation and increase safety margins by avoiding high risk late intubation. This study evaluates whether machine learning can predict the need for intubation within 24 h using commonly available bedside and laboratory parameters taken at critical care admission. We extracted data from 2 large critical care databases (MIMIC-III and eICU-CRD). Missing variables were imputed using autoencoder. Machine learning classifiers using logistic regression and random forest were trained using 60% of the data and tested using the remaining 40% of the data. We compared the performance of logistic regression and random forest models to predict intubation in critically ill patients. After excluding patients with limitations of therapy and missing data, we included 17,616 critically ill patients in this retrospective cohort. Within 24 h of admission, 2,292 patients required intubation, whilst 15,324 patients were not intubated. Blood gas parameters (PaO2, PaCO2, HCO3-), Glasgow Coma Score, respiratory variables (respiratory rate, SpO2), temperature, age, and oxygen therapy were used to predict intubation. Random forest had AUC 0.86 (95% CI 0.85-0.87) and logistic regression had AUC 0.77 (95% CI 0.76-0.78) for intubation prediction performance. Random forest model had sensitivity of 0.88 (95% CI 0.86-0.90) and specificity of 0.66 (95% CI 0.63-0.69), with good calibration throughout the range of intubation risks. The results showed that machine learning could predict the need for intubation in critically ill patients using commonly collected bedside clinical parameters and laboratory results. It may be used in real-time to help clinicians predict the need for intubation within 24 h of intensive care unit admission.Peer reviewe

    Predicting and Understanding Unexpected Respiratory Decompensation in Critical Care Using Sparse and Heterogeneous Clinical Data

    No full text
    Hospital intensive care units (ICUs) care for severely ill patients, many of whom require some form of organ support. Clinicians in ICUs are often challenged with integrating large volumes of continuously recorded physiological and clinical data in order to diagnose and treat patients. In this work, we focus on developing interpretable models for predicting unexpected respiratory decompensation requiring intubation in ICU patients. Predicting need for intubation could have important implications for the patient and medical staff and potentially enable timely interventions for improved patient outcome. Using data from adult ICU patients from the Medical Information Mart for Intensive Care (MIMIC)-III database, we developed gradient boosting models for predicting intubation onset. In a cohort of 12,470 patients, of whom 1,067 were intubated (8.55%), we achieved an area under the receiver operating characteristic curve (AUROC) of 0.89, with 95% confidence interval (CI) 0.87 - 0.91, when predicting intubation 3 hours ahead of time, a significant increase (p<0.001) over the AUROC achieved using several baselines, including logistic regression (0.81, 95% CI 0.78 - 0.84) and neural networks (0.80, 95% CI 0.77 - 0.83]). Finally, we conducted feature importance analysis using gradient boosting and derived useful insights in understanding the relative importance of clinical vs. biological variables in predicting impending respiratory decompensation in ICUs.National Institutes of Health (U.S.) (Grant R01-EB017205)National Institutes of Health (U.S.) (Grant R01-EB001659)National Institutes of Health (U.S.) (Grant R01GM104987
    corecore