17 research outputs found

    Semi-supervised Text Regression with Conditional Generative Adversarial Networks

    Get PDF
    Enormous online textual information provides intriguing opportunities for understandings of social and economic semantics. In this paper, we propose a novel text regression model based on a conditional generative adversarial network (GAN), with an attempt to associate textual data and social outcomes in a semi-supervised manner. Besides promising potential of predicting capabilities, our superiorities are twofold: (i) the model works with unbalanced datasets of limited labelled data, which align with real-world scenarios; and (ii) predictions are obtained by an end-to-end framework, without explicitly selecting high-level representations. Finally we point out related datasets for experiments and future research directions

    Classifying Tweet Level Judgements of Rumours in Social Media

    Full text link
    Social media is a rich source of rumours and corresponding community reactions. Rumours reflect different characteristics, some shared and some individual. We formulate the problem of classifying tweet level judgements of rumours as a supervised learning task. Both supervised and unsupervised domain adaptation are considered, in which tweets from a rumour are classified on the basis of other annotated rumours. We demonstrate how multi-task learning helps achieve good results on rumours from the 2011 England riots

    What Twitter Profile and Posted Images Reveal About Depression and Anxiety

    Full text link
    Previous work has found strong links between the choice of social media images and users' emotions, demographics and personality traits. In this study, we examine which attributes of profile and posted images are associated with depression and anxiety of Twitter users. We used a sample of 28,749 Facebook users to build a language prediction model of survey-reported depression and anxiety, and validated it on Twitter on a sample of 887 users who had taken anxiety and depression surveys. We then applied it to a different set of 4,132 Twitter users to impute language-based depression and anxiety labels, and extracted interpretable features of posted and profile pictures to uncover the associations with users' depression and anxiety, controlling for demographics. For depression, we find that profile pictures suppress positive emotions rather than display more negative emotions, likely because of social media self-presentation biases. They also tend to show the single face of the user (rather than show her in groups of friends), marking increased focus on the self, emblematic for depression. Posted images are dominated by grayscale and low aesthetic cohesion across a variety of image features. Profile images of anxious users are similarly marked by grayscale and low aesthetic cohesion, but less so than those of depressed users. Finally, we show that image features can be used to predict depression and anxiety, and that multitask learning that includes a joint modeling of demographics improves prediction performance. Overall, we find that the image attributes that mark depression and anxiety offer a rich lens into these conditions largely congruent with the psychological literature, and that images on Twitter allow inferences about the mental health status of users.Comment: ICWSM 201

    Longitudinal Modeling of Social Media with Hawkes Process based on Users and Networks

    Get PDF
    Online social networks provide a platform for sharing information at an unprecedented scale. Users generate information which propagates across the network resulting in information cascades. In this paper, we study the evolution of information cascades in Twitter using a point process model of user activity. We develop several Hawkes process models considering various properties including conversational structure, users’ connections and general features of users including the textual information, and show how they are helpful in modeling the social network activity. We consider low-rank embeddings of users and user features, and learn the features helpful in identifying the influence and susceptibility of users. Evaluation on Twitter data sets associated with civil unrest shows that incorporating richer properties improves the performance in predicting future activity of users and memes

    Semi-supervised Text Regression with Conditional Generative Adversarial Networks

    Get PDF
    Enormous online textual information provides intriguing opportunities for understandings of social and economic semantics. In this paper, we propose a novel text regression model based on a conditional generative adversarial network (GAN), with an attempt to associate textual data and social outcomes in a semi-supervised manner. Besides promising potential of predicting capabilities, our superiorities are twofold: (i) the model works with unbalanced datasets of limited labelled data, which align with real-world scenarios; and (ii) predictions are obtained by an end-to-end framework, without explicitly selecting high-level representations. Finally we point out related datasets for experiments and future research directions

    Advances in nowcasting influenza-like illness rates using search query logs

    Get PDF
    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012–13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance

    Enhancing Feature Selection Using Word Embeddings: The Case of Flu Surveillance

    Get PDF
    Health surveillance systems based on online user-generated content often rely on the identification of textual markers that are related to a target disease. Given the high volume of available data, these systems benefit from an automatic feature selection process. This is accomplished either by applying statistical learning techniques, which do not consider the semantic relationship between the selected features and the inference task, or by developing labour-intensive text classifiers. In this paper, we use neural word embeddings, trained on social media content from Twitter, to determine, in an unsupervised manner, how strongly textual features are semantically linked to an underlying health concept. We then refine conventional feature selection methods by a priori operating on textual variables that are sufficiently close to a target concept. Our experiments focus on the supervised learning problem of estimating influenza-like illness rates from Google search queries. A "flu infection" concept is formulated and used to reduce spurious and potentially confounding features that were selected by previously applied approaches. In this way, we also address forms of scepticism regarding the appropriateness of the feature space, alleviating potential cases of overfitting. Ultimately, the proposed hybrid feature selection method creates a more reliable model that, according to our empirical analysis, improves the inference performance (Mean Absolute Error) of linear and nonlinear regressors by 12% and 28.7%, respectively

    Multi-Task Learning Improves Disease Models from Web Search

    Get PDF
    We investigate the utility of multi-task learning to disease surveillance using Web search data. Our motivation is two-fold. Firstly, we assess whether concurrently training models for various geographies - inside a country or across different countries - can improve accuracy. We also test the ability of such models to assist health systems that are producing sporadic disease surveillance reports that reduce the quantity of available training data. We explore both linear and nonlinear models, specifically a multi-task expansion of elastic net and a multi-task Gaussian Process, and compare them to their respective single task formulations. We use influenza-like illness as a case study and conduct experiments on the United States (US) as well as England, where both health and Google search data were obtained. Our empirical results indicate that multi-task learning improves regional as well as national models for the US. The percentage of improvement on mean absolute error increases up to 14.8% as the historical training data is reduced from 5 to 1 year(s), illustrating that accurate models can be obtained, even by training on relatively short time intervals. Furthermore, in simulated scenarios, where only a few health reports (training data) are available, we show that multi-task learning helps to maintain a stable performance across all the affected locations. Finally, we present results from a cross-country experiment, where data from the US improves the estimates for England. As the historical training data for England is reduced, the benefits of multi-task learning increase, reducing mean absolute error by up to 40%
    corecore