4 research outputs found

    A Testability Analysis Framework for Non-Functional Properties

    Full text link
    This paper presents background, the basic steps and an example for a testability analysis framework for non-functional properties

    A survey on software testability

    Full text link
    Context: Software testability is the degree to which a software system or a unit under test supports its own testing. To predict and improve software testability, a large number of techniques and metrics have been proposed by both practitioners and researchers in the last several decades. Reviewing and getting an overview of the entire state-of-the-art and state-of-the-practice in this area is often challenging for a practitioner or a new researcher. Objective: Our objective is to summarize the body of knowledge in this area and to benefit the readers (both practitioners and researchers) in preparing, measuring and improving software testability. Method: To address the above need, the authors conducted a survey in the form of a systematic literature mapping (classification) to find out what we as a community know about this topic. After compiling an initial pool of 303 papers, and applying a set of inclusion/exclusion criteria, our final pool included 208 papers. Results: The area of software testability has been comprehensively studied by researchers and practitioners. Approaches for measurement of testability and improvement of testability are the most-frequently addressed in the papers. The two most often mentioned factors affecting testability are observability and controllability. Common ways to improve testability are testability transformation, improving observability, adding assertions, and improving controllability. Conclusion: This paper serves for both researchers and practitioners as an "index" to the vast body of knowledge in the area of testability. The results could help practitioners measure and improve software testability in their projects

    Using Natural Language Processing and Machine Learning Techniques to Characterize Configuration Bug Reports: A Study

    Get PDF
    In this study, a tool is developed that achieves two purposes: (1) given bug reports, it identifies configuration bug reports from non-configuration bug reports; (2) once a bug report is identified to be a configuration bug report, the tool finds out what specific configuration option the bug report is associated. This study starts with a review of related works that used machine learning tools to solve software bug and bug report related issues. It then discusses the natural language processing and machine learning techniques. Afterwards, the development process of the proposed tool is described in detail, including the motivation, the experiment design and setup, and results analysis. In order to evaluate the effectiveness of the tool, both cross-validation and a similar validation technique are performed. Results show that the tool is effective at both identifying configuration bug reports and the associated configuration options for the identified bug reports. This study proves the usefulness of machine learning techniques in solving bug report related issues. It also shows that configuration and non-configuration bug reports have different characteristics that can be learned by machine learning tools. The developed tool can be improved in a number of areas to make it more effective

    CONFPROFITT: A CONFIGURATION-AWARE PERFORMANCE PROFILING, TESTING, AND TUNING FRAMEWORK

    Get PDF
    Modern computer software systems are complicated. Developers can change the behavior of the software system through software configurations. The large number of configuration option and their interactions make the task of software tuning, testing, and debugging very challenging. Performance is one of the key aspects of non-functional qualities, where performance bugs can cause significant performance degradation and lead to poor user experience. However, performance bugs are difficult to expose, primarily because detecting them requires specific inputs, as well as specific configurations. While researchers have developed techniques to analyze, quantify, detect, and fix performance bugs, many of these techniques are not effective in highly-configurable systems. To improve the non-functional qualities of configurable software systems, testing engineers need to be able to understand the performance influence of configuration options, adjust the performance of a system under different configurations, and detect configuration-related performance bugs. This research will provide an automated framework that allows engineers to effectively analyze performance-influence configuration options, detect performance bugs in highly-configurable software systems, and adjust configuration options to achieve higher long-term performance gains. To understand real-world performance bugs in highly-configurable software systems, we first perform a performance bug characteristics study from three large-scale opensource projects. Many researchers have studied the characteristics of performance bugs from the bug report but few have reported what the experience is when trying to replicate confirmed performance bugs from the perspective of non-domain experts such as researchers. This study is meant to report the challenges and potential workaround to replicate confirmed performance bugs. We also want to share a performance benchmark to provide real-world performance bugs to evaluate future performance testing techniques. Inspired by our performance bug study, we propose a performance profiling approach that can help developers to understand how configuration options and their interactions can influence the performance of a system. The approach uses a combination of dynamic analysis and machine learning techniques, together with configuration sampling techniques, to profile the program execution, analyze configuration options relevant to performance. Next, the framework leverages natural language processing and information retrieval techniques to automatically generate test inputs and configurations to expose performance bugs. Finally, the framework combines reinforcement learning and dynamic state reduction techniques to guide subject application towards achieving higher long-term performance gains
    corecore