7 research outputs found

    Predicting Face Recognition Performance Using Image Quality

    Get PDF
    This paper proposes a data driven model to predict the performance of a face recognition system based on image quality features. We model the relationship between image quality features (e.g. pose, illumination, etc.) and recognition performance measures using a probability density function. To address the issue of limited nature of practical training data inherent in most data driven models, we have developed a Bayesian approach to model the distribution of recognition performance measures in small regions of the quality space. Since the model is based solely on image quality features, it can predict performance even before the actual recognition has taken place. We evaluate the performance predictive capabilities of the proposed model for six face recognition systems (two commercial and four open source) operating on three independent data sets: MultiPIE, FRGC and CAS-PEAL. Our results show that the proposed model can accurately predict performance using an accurate and unbiased Image Quality Assessor (IQA). Furthermore, our experiments highlight the impact of the unaccounted quality space -- the image quality features not considered by IQA -- in contributing to performance prediction errors

    A Bayesian model for predicting face recognition performance using image quality

    Get PDF
    Quality of a pair of facial images is a strong indicator of the uncertainty in decision about identity based on that image pair. In this paper, we describe a Bayesian approach to model the relation between image quality (like pose, illumination, noise, sharpness, etc) and corresponding face recognition performance. Experiment results based on the MultiPIE data set show that our model can accurately aggregate verification samples into groups for which the verification performance varies fairly consistently. Our model does not require similarity scores and can predict face recognition performance using only image quality information. Such a model has many applications. As an illustrative application, we show improved verification performance when the decision threshold automatically adapts according to the quality of facial images

    Face Image Quality Assessment: A Literature Survey

    Full text link
    The performance of face analysis and recognition systems depends on the quality of the acquired face data, which is influenced by numerous factors. Automatically assessing the quality of face data in terms of biometric utility can thus be useful to detect low-quality data and make decisions accordingly. This survey provides an overview of the face image quality assessment literature, which predominantly focuses on visible wavelength face image input. A trend towards deep learning based methods is observed, including notable conceptual differences among the recent approaches, such as the integration of quality assessment into face recognition models. Besides image selection, face image quality assessment can also be used in a variety of other application scenarios, which are discussed herein. Open issues and challenges are pointed out, i.a. highlighting the importance of comparability for algorithm evaluations, and the challenge for future work to create deep learning approaches that are interpretable in addition to providing accurate utility predictions
    corecore