3,577 research outputs found

    Learning where to see : a novel attention model for automated immunohistochemical scoring

    Get PDF
    Estimatingover-amplification of human epidermal growth factor receptor2 (HER2) on invasive breast cancer (BC) is regarded as a significant predictive and prognostic marker. We propose a novel deep reinforcement learning (DRL) based model that treats immunohistochemical (IHC) scoring of HER2 as a sequential learning task. For a given image tile sampled from multi-resolution giga-pixel whole slide image (WSI), the model learns to sequentially identify some of the diagnostically relevant regions of interest (ROIs) by following a parameterized policy. The selected ROIs are processed by recurrent and residual convolution networks to learn the discriminative features for different HER2 scores and predict the next location, without requiring to process all the subimage patches of a given tile for predicting the HER2 score, mimicking the histopathologist who would not usually analyse every part of the slide at the highest magnification. The proposed model incorporates a task-specific regularization term and inhibition of return mechanism to prevent the model from revisiting the previously attended locations. We evaluated our model on two IHC datasets: a publicly available dataset from the HER2 scoring challenge contest and another dataset consisting of WSIs of gastroenteropancreatic neuroendocrine tumor sections stained with Glo1 marker. We demonstrate that the proposed model out performs other methods based on state-of-the-art deep convolutional networks. To the best of our knowledge, this is the first study using DRL for IHC scoring and could potentially lead to wider use of DRL in the domain of computational pathology reducing the computational burden of the analysis of large multi-gigapixel histology images

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Advancing Medical Imaging with Language Models: A Journey from N-grams to ChatGPT

    Full text link
    In this paper, we aimed to provide a review and tutorial for researchers in the field of medical imaging using language models to improve their tasks at hand. We began by providing an overview of the history and concepts of language models, with a special focus on large language models. We then reviewed the current literature on how language models are being used to improve medical imaging, emphasizing different applications such as image captioning, report generation, report classification, finding extraction, visual question answering, interpretable diagnosis, and more for various modalities and organs. The ChatGPT was specially highlighted for researchers to explore more potential applications. We covered the potential benefits of accurate and efficient language models for medical imaging analysis, including improving clinical workflow efficiency, reducing diagnostic errors, and assisting healthcare professionals in providing timely and accurate diagnoses. Overall, our goal was to bridge the gap between language models and medical imaging and inspire new ideas and innovations in this exciting area of research. We hope that this review paper will serve as a useful resource for researchers in this field and encourage further exploration of the possibilities of language models in medical imaging

    Magnifying networks for histopathological images with billions of pixels

    Get PDF
    Amongst the other benefits conferred by the shift from traditional to digital pathology is the potential to use machine learning for diagnosis, prognosis, and personalization. A major challenge in the realization of this potential emerges from the extremely large size of digitized images, which are often in excess of 100,000 × 100,000 pixels. In this paper, we tackle this challenge head-on by diverging from the existing approaches in the literature—which rely on the splitting of the original images into small patches—and introducing magnifying networks (MagNets). By using an attention mechanism, MagNets identify the regions of the gigapixel image that benefit from an analysis on a finer scale. This process is repeated, resulting in an attention-driven coarse-to-fine analysis of only a small portion of the information contained in the original whole-slide images. Importantly, this is achieved using minimal ground truth annotation, namely, using only global, slide-level labels. The results from our tests on the publicly available Camelyon16 and Camelyon17 datasets demonstrate the effectiveness of MagNets—as well as the proposed optimization framework—in the task of whole-slide image classification. Importantly, MagNets process at least five times fewer patches from each whole-slide image than any of the existing end-to-end approaches.Peer reviewe
    • …
    corecore