1,450,356 research outputs found

    First-principles predicted low-energy structures of NaSc(BH4)4

    Full text link
    According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH4_4)4_4 crystallizes in the crystallographic space group CmcmCmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on \textit{ab initio} calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C2221C222_1 symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.98.27.9-8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH4_4)4_4.Comment: Version publishe

    Simulation of structural and electronic properties of amorphous tungsten oxycarbides

    Get PDF
    Electron beam induced deposition with tungsten hexacarbonyl W(CO)6 as precursors leads to granular deposits with varying compositions of tungsten, carbon and oxygen. Depending on the deposition conditions, the deposits are insulating or metallic. We employ an evolutionary algorithm to predict the crystal structures starting from a series of chemical compositions that were determined experimentally. We show that this method leads to better structures than structural relaxation based on guessed initial structures. We approximate the expected amorphous structures by reasonably large unit cells that can accommodate local structural environments that resemble the true amorphous structure. Our predicted structures show an insulator to metal transition close to the experimental composition at which this transition is actually observed. Our predicted structures also allow comparison to experimental electron diffraction patterns.Comment: 17 Pages, 11 figure

    Modelling of a microstrip patch antenna using a hybrid FDTD/PEEC method

    Get PDF
    A hybrid technique combining FDTD and PEEC methods is applied to the prediction of radiation from printed structures. The predicted radiation patterns of a microstrip patch antenna are compared to those obtained using FDTD.A hybrid technique combining FDTD and PEEC methods is applied to the prediction of radiation from printed structures. The predicted radiation patterns of a microstrip patch antenna are compared to those obtained using FDTD

    Predicted structures of agonist and antagonist bound complexes of adenosine A_3 receptor

    Get PDF
    We used the GEnSeMBLE Monte Carlo method to predict ensemble of the 20 best packings (helix rotations and tilts) based on the neutral total energy (E) from a vast number (10 trillion) of potential packings for each of the four subtypes of the adenosine G protein-coupled receptors (GPCRs), which are involved in many cytoprotective functions. We then used the DarwinDock Monte Carlo methods to predict the binding pose for the human A_3 adenosine receptor (hAA_3R) for subtype selective agonists and antagonists. We found that all four A_3 agonists stabilize the 15th lowest conformation of apo-hAA_3R while also binding strongly to the 1st and 3rd. In contrast the four A_3 antagonists stabilize the 2nd or 3rd lowest conformation. These results show that different ligands can stabilize different GPCR conformations, which will likely affect function, complicating the design of functionally unique ligands. Interestingly all agonists lead to a trans χ1 angle for W6.48 that experiments on other GPCRs associate with G-protein activation while all 20 apo-AA_3R conformations have a W6.48 gauche+ χ1 angle associated experimentally with inactive GPCRs for other systems. Thus docking calculations have identified critical ligand-GPCR structures involved with activation. We found that the predicted binding site for selective agonist Cl-IB-MECA to the predicted structure of hAA_3R shows favorable interactions to three subtype variable residues, I253^(6.58), V169^(EL2), and Q167^(EL2), while the predicted structure for hAA_(2A)R shows weakened to the corresponding amino acids: T256^(6.58), E169^(EL2), and L167^(EL2), explaining the observed subtype selectivity

    Predicted band structures of III-V semiconductors in wurtzite phase

    Full text link
    While non-nitride III-V semiconductors typically have a zincblende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier {\it ab initio} calculations, and where experimental results are available (InP, InAs and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may lead to new functionalities for designing devices that manipulate spin degrees of freedom

    An Overview of Uncovered and Suspected Large-Scale Structures behind the Milky Way

    Get PDF
    Various dynamically important extragalactic large-scale structures in the local Universe lie behind the Milky Way. Most of these structures (predicted and unexpected) have only recently been made ``visible'' through dedicated deep surveys at various wavelengths. The wide range of observational searches (optical, near infrared, far infrared, radio and X-ray) for galaxies in the Zone of Avoidance (ZOA) will be reviewed and the uncovered and suspected large-scale structures summarised. Particular emphasis is given to the Great Attractor region where the existence of yet another cluster is suspected (Woudt 1998). Predictions from reconstructions of the density field in the ZOA are discussed and compared with observational evidence. Although no major structures are predicted out to about v < 10000 km/s for which no observational evidence exists, the comparison between reconstructed density fields and the observed galaxy distribution remain important as they allow derivations of the density and biasing parameters.Comment: To appear in PASA 16. Proceedings of workshop "HI in the Local Universe, II", held in Melbourne, Sept. 1998. 9 pages, LaTeX2e, 1 encapsulated PS figur

    Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer

    Full text link
    Topological spin structures, such as magnetic skyrmions, hold great promises for data storage applications, thanks to their inherent stability. In most cases, skyrmions are stabilized by magnetic fields in non-centrosymmetric systems displaying the chiral Dzyaloshinskii-Moriya exchange interaction, while spontaneous skyrmion lattices have been reported in centrosymmetric itinerant magnets with long-range interactions. Here, a spontaneous anti-biskyrmion lattice with unique topology and chirality is predicted in the monolayer of a semiconducting and centrosymmetric metal halide, NiI2_2. Our first-principles and Monte Carlo simulations reveal that the anisotropies of the short-range symmetric exchange, when combined with magnetic frustration, can lead to an emergent chiral interaction that is responsible for the predicted topological spin structures. The proposed mechanism finds a prototypical manifestation in two-dimensional magnets, thus broadening the class of materials that can host spontaneous skyrmionic states.Comment: submitte
    corecore