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2 Outline

1. What is the problem? - Structures with both fine detail 

and large electrical size

2. For example, predicting PCB behaviour can be done 

by:
1. Partial Element Equivalent Circuits (PEEC)
2. Finite Difference Time Domain (FDTD)

3. The best of both worlds - hybridisation

4. Results

5. Onwards
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• Printed Circuits and becoming more complex, dense and 

fast.

• They operate in complex environments.

• Issues such as signal integrity, interference and crosstalk 

have become key parts of circuit and system design.

• CAD tools have to keep up with improvements in 

manufacturing capability.

An example of the problem?

4

A typical modern PCB
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Can use standard FDTD but…

• If the structure contains fine detail or boundaries 
which do not conform to the grid, a very fine mesh 
is needed.

Strip width ~ λ/100!

6

Can use PEEC but…

• If the structure size is a significant fraction of a 
wavelength then retardation effects must be 
included.

• This seriously complicates the method and can 
lead to late time instability which is challenging to 
get rid of.
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… there is a better way

• Extend existing “thin wire formalisms” to allow for 

general wire and microstrip circuits.

• Let the formalisms take care of the detail, let the FDTD 

algorithm take care of the long range interactions.

• The final algorithm can be viewed as a hybrid between 

FDTD and PEEC

8

What are thin wire formalisms?

• In standard FDTD, metals are treated by enforcing 
field boundary conditions. The currents are not 
explicitly calculated

• With thin wire formalisms, the currents in the wire 
are explicitly treated using extra differential 
equations

• This allows the singularities of the fields to be 
accounted for and allows many wires to be placed 
within a single FDTD cell.
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Wire bundles embedded within an FDTD mesh

∆

d

1Wire

2Wire
Consider a bundle of wires in 

the FDTD mesh. Two wires of 

the bundle are shown here.

10

The E field, tangential to the wires, at a point, r, can be 

expressed in terms of the potentials as follows:
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Wire bundles embedded within an FDTD mesh
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Therefore the E field, tangential to the wires, at a point, 

r, can be expressed in terms of the E field on the ith wire 

as follows:
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Wire bundles embedded within an FDTD mesh
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Wire bundles embedded within an FDTD mesh

2/∆=r

∆

E field node Wire cross-section

Interpolated E field

d

1Wire

2Wire
Following Ledfelt[1] we choose 

a set of weighting functions, 

wi(r), to be non-zero on a 

circular shell centred on the ith

wire and zero elsewhere.

[1] Ledfelt, G: “A stable subcell model for arbitrarily oriented thin 

wires for the FDTD method”, International Journal of Numerical 

Modelling : Electronic Networks, Devices and Fields, 2002(15), 

pp. 503-515
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Now multiply each side of the equation by each of the 

weighting functions, wi(r) in turn and integrate over all 

space. This leads to a set of equations, one for each 

wire:
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where:

Vsi is a voltage source if present

Wire bundles embedded within an FDTD mesh

14 These can be discretised in space using central 
differences
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Where, for a wire:
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Circuits embedded in the FDTD mesh

The approach used in the thin wire formalism can 

be readily extended to deal with this situation

Circular shell around each 
segment
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The “in-cell” mutual inductances

For example, the “in-cell” mutual inductance between two 

segments in the x-z plane and orientated in the z direction 

can be calculated by direct integration like this:
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The wire update equations 
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where, C, is the connection matrix and 

P is the inverse capacitance matrix

The “in-cell” mutual capacitances can be calculated 

similarly and the update equations are given by:

18 Comparison with PEEC methods

In the PEEC method the 

self and mutual 

inductances between 

segments are used in an 

equivalent circuit
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The PEEC mutual inductances

The mutual inductance between two segments in the x-z

plane can be calculated like this:
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compared with the “in-cell” mutual inductance:
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Comparison of mutual coupling

Hybrid PEEC
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Comparison of mutual coupling

• In PEEC, it has been shown [1] that mutual coupling 

effects are significant at distances of up to 5λ.

• Retardation effects seriously complicate the method [2].

• In the hybrid approach mutual coupling is very low at 

distances greater than the size of the FDTD cell

• Long range interactions are dealt with by FDTD

1. M. Verbeek, “Partial Element Equivalent Circuit (PEEC) models for on-

chip passives and interconnects”, RANA report 02-27, 2002

2. A. Ruehli and E. Chiprout, “The importance of retardation in PEEC 

models for electrical interconnect and package (EIP) applications”, 

Electrical Performance of Electronic Packaging, 1995, pp 232-234
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Example results

1. Microstrip low pass filter

2. Microstrip band pass filter
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The low pass filter geometry

2.353.46Patch 5

3.234.72Patch 4

5.941.33Patch 3

4.143.09Patch 2

3.655.11Patch 1

6.120.58Track 6

10.70.26Track 5

0.262.72Track 4

0.261.39Track 3

20.950.26Track 2

13.000.58Track 1

Length(mm)Width(mm)

Substrate height 0.635mm

Box size: 30x60x6mm 

Substrate εr = 10.5
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The low pass filter and the FDTD mesh

Segment size: 1mm;

FDTD mesh size: 1mm*0.635mm*1mm (x*y*z);

Width of excitation pulse: 200 picoseconds;

Number of iterations: 8200
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Results for the low pass filter
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26 The bandpass filter geometry1l∆ 2l∆ 3l∆ 4l∆ 5l∆

1l∆ 2l∆ 3l∆ 4l∆ 5l∆

S5: 0.101mm∆/5: 0.2947mm

S4: 0.635mm∆/4: 0.2768mm

S3: 0.812mm∆/3: 0.2921mm

S2: 0.635mm∆/2: 0.2744mm

S1: 0.101mm∆/1: 0.2946mm

Length: 6.573mmTrack 6

Length: 5.715mmTrack 5

Length: 5.689mmTrack 4

Length: 5.665mmTrack 3

Length: 5.690mmTrack 2

Width: 

0.356mm

Length: 5.994mmTrack 1

Width: 15.0mmLength: 23.0mmSubstrate

Height 0.4mmSubstrate Relative Permittivity: 9.9

Height 4.0mmLength: 25.0mmBox



27 The bandpass filter and the FDTD mesh1l∆ 2l∆ 3l∆ 4l∆ 5l∆

1l∆ 2l∆ 3l∆ 4l∆ 5l∆

Segment size: 0.45mm;

FDTD mesh size: 

1mm*0.4mm*1mm (x*y*z);

Width of excitation pulse: 20 

picoseconds;

Number of iterations: 8100.

28 Results using the hybrid method1l∆ 2l∆ 3l∆ 4l∆ 5l∆

1l∆ 2l∆ 3l∆ 4l∆ 5l∆

[1] A fast integral equation technique for shielded planar circuits defined on nonuniform meshes Eleftheriades, G.V.; 

Mosig, J.R.; Guglielmi, M.; Microwave Theory and Techniques, IEEE Transactions on Volume 44,  Issue 12,  Part 1,  

Dec. 1996 Page(s):2293 - 2296
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29 Results using the hybrid method

[1] A fast integral equation technique for shielded planar circuits defined on nonuniform meshes Eleftheriades, G.V.; 

Mosig, J.R.; Guglielmi, M.; Microwave Theory and Techniques, IEEE Transactions on Volume 44,  Issue 12,  Part 1,  

Dec. 1996 Page(s):2293 - 2296
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Conclusions

• It has been shown that an extended wire formalism 

allows treatment of complex circuits within the FDTD 

mesh.

• Because the mutual inductance becomes very small 

when the wire separation is equal to the circle radius, 

long range effects are not a problem. Retardation is not 

necessary to be included.

• FDTD takes account of long range interactions

PEEC takes account of the fine detail.

• Can be extended to include active components and 

networks.


