12,287 research outputs found

    Randomized Riemannian Preconditioning for Orthogonality Constrained Problems

    Get PDF
    Optimization problems with (generalized) orthogonality constraints are prevalent across science and engineering. For example, in computational science they arise in the symmetric (generalized) eigenvalue problem, in nonlinear eigenvalue problems, and in electronic structures computations, to name a few problems. In statistics and machine learning, they arise, for example, in canonical correlation analysis and in linear discriminant analysis. In this article, we consider using randomized preconditioning in the context of optimization problems with generalized orthogonality constraints. Our proposed algorithms are based on Riemannian optimization on the generalized Stiefel manifold equipped with a non-standard preconditioned geometry, which necessitates development of the geometric components necessary for developing algorithms based on this approach. Furthermore, we perform asymptotic convergence analysis of the preconditioned algorithms which help to characterize the quality of a given preconditioner using second-order information. Finally, for the problems of canonical correlation analysis and linear discriminant analysis, we develop randomized preconditioners along with corresponding bounds on the relevant condition number

    Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models

    Get PDF
    We study the preconditioning of Markov chain Monte Carlo (MCMC) methods using coarse-scale models with applications to subsurface characterization. The purpose of preconditioning is to reduce the fine-scale computational cost and increase the acceptance rate in the MCMC sampling. This goal is achieved by generating Markov chains based on two-stage computations. In the first stage, a new proposal is first tested by the coarse-scale model based on multiscale finite volume methods. The full fine-scale computation will be conducted only if the proposal passes the coarse-scale screening. For more efficient simulations, an approximation of the full fine-scale computation using precomputed multiscale basis functions can also be used. Comparing with the regular MCMC method, the preconditioned MCMC method generates a modified Markov chain by incorporating the coarse-scale information of the problem. The conditions under which the modified Markov chain will converge to the correct posterior distribution are stated in the paper. The validity of these assumptions for our application and the conditions which would guarantee a high acceptance rate are also discussed. We would like to note that coarse-scale models used in the simulations need to be inexpensive but not necessarily very accurate, as our analysis and numerical simulations demonstrate. We present numerical examples for sampling permeability fields using two-point geostatistics. The Karhunen--Loève expansion is used to represent the realizations of the permeability field conditioned to the dynamic data, such as production data, as well as some static data. Our numerical examples show that the acceptance rate can be increased by more than 10 times if MCMC simulations are preconditioned using coarse-scale models

    Fast iterative solvers for convection-diffusion control problems

    Get PDF
    In this manuscript, we describe effective solvers for the optimal control of stabilized convection-diffusion problems. We employ the local projection stabilization, which we show to give the same matrix system whether the discretize-then-optimize or optimize-then-discretize approach for this problem is used. We then derive two effective preconditioners for this problem, the �first to be used with MINRES and the second to be used with the Bramble-Pasciak Conjugate Gradient method. The key components of both preconditioners are an accurate mass matrix approximation, a good approximation of the Schur complement, and an appropriate multigrid process to enact this latter approximation. We present numerical results to demonstrate that these preconditioners result in convergence in a small number of iterations, which is robust with respect to the mesh size h, and the regularization parameter β, for a range of problems

    On optimal solution error covariances in variational data assimilation problems

    Get PDF
    The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find unknown parameters such as distributed model coefficients or boundary conditions. The equation for the optimal solution error is derived through the errors of the input data (background and observation errors), and the optimal solution error covariance operator through the input data error covariance operators, respectively. The quasi-Newton BFGS algorithm is adapted to construct the covariance matrix of the optimal solution error using the inverse Hessian of an auxiliary data assimilation problem based on the tangent linear model constraints. Preconditioning is applied to reduce the number of iterations required by the BFGS algorithm to build a quasi-Newton approximation of the inverse Hessian. Numerical examples are presented for the one-dimensional convection-diffusion model

    KATP Channel Openers Have Opposite Effects on Mitochondrial Respiration Under Different Energetic Conditions

    Get PDF
    Mitochondrial (m) KATP channel opening has been implicated in triggering cardiac preconditioning. Its consequence on mitochondrial respiration, however, remains unclear. We investigated the effects of two different KATP channel openers and antagonists on mitochondrial respiration under two different energetic conditions. Oxygen consumption was measured for complex I (pyruvate/malate) or complex II (succinate with rotenone) substrates in mitochondria from fresh guinea pig hearts. One of two mKATP channel openers, pinacidil or diazoxide, was given before adenosine diphosphate in the absence or presence of an mKATP channel antagonist, glibenclamide or 5-hydroxydecanoate. Without ATP synthase inhibition, both mKATP channel openers differentially attenuated mitochondrial respiration. Neither mKATP channel antagonist abolished these effects. When ATP synthase was inhibited by oligomycin to decrease [ATP], both mKATP channel openers accelerated respiration for both substrate groups. This was abolished by mKATP channel blockade. Thus, under energetically more physiological conditions, the main effect of mKATP channel openers on mitochondrial respiration is differential inhibition independent of mKATP channel opening. In contrast, under energetically less physiological conditions, mKATP channel opening can be evidenced by accelerated respiration and blockade by antagonists. Therefore, the effects of mKATP channel openers on mitochondrial function likely depend on the experimental conditions and the cell\u27s underlying energetic state
    corecore