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Abstract

Optimization problems on the generalized Stiefel manifold (and products of it) are prevalent across
science and engineering. For example, in computational science they arise in symmetric (generalized)
eigenvalue problems, in nonlinear eigenvalue problems, and in electronic structures computations, to name
a few problems. In statistics and machine learning, they arise, for example, in various dimensionality
reduction techniques such as canonical correlation analysis. In deep learning, regularization and improved
stability can be obtained by constraining some layers to have parameter matrices that belong to the
Stiefel manifold. Solving problems on the generalized Stiefel manifold can be approached via the tools
of Riemannian optimization. However, using the standard geometric components for the generalized
Stiefel manifold has two possible shortcomings: computing some of the geometric components can be
too expensive and convergence can be rather slow in certain cases. Both shortcomings can be addressed
using a technique called Riemannian preconditioning, which amounts to using geometric components
derived by a precoditioner that defines a Riemannian metric on the constraint manifold. In this paper
we develop the geometric components required to perform Riemannian optimization on the generalized
Stiefel manifold equipped with a non-standard metric, and illustrate theoretically and numerically the
use of those components and the effect of Riemannian preconditioning for solving optimization problems
on the generalized Stiefel manifold.

1 Introduction
In this paper we consider large-scale optimization problems on the generalized Stiefel manifold (and products
of it), i.e. optimization with constraint spaces defined via generalized orthogonality constraints. One well
known example of a problem with a generalized orthogonality constraints is the problem of finding the
dominant generalized eigenspace of a symmetric positive-definite (SPD) matrix pencil. Indeed, given a pair
of SPD matrices A,B ∈ Rd×d, minimizers of −Tr

(
XTAX

)
subject to XTBX = Ip (where X ∈ Rd×p) are

bases for the subspace spanned by the p generalized eigenvectors that correspond to the p largest generalized
eigenvalues of the pencil (A,B) (this is a consequence of the Courant–Fisher characterization of generalized
eigenvalues). More generally, problems with (generalized) orthogonality constraints are prevalent across
science and engineering. Examples include, the Trust-Region Subproblem, Canonical Correlation Analysis
(CCA) [1], and Fisher Linear Discriminant Analysis [2].

Some optimization problems with generalized orthogonality constraints can be reformulated as (gener-
alized) eigenvalue problems or (weighted) Singular Value Decomposition (SVD) problems. This is true for
some of the cases mentioned in the previous paragraph. For example, CCA on a pair of matrices (X,Y )
amounts to computing the SVD of PTQ where P and Q are orthonormal matrices whose column space spans
the column space of X and Y (respectively) [3]. This allows one to use direct methods, but that is unrealistic
for large scale problems.
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Using iterative method in lieu of direct methods is a common modus operandi for handling large scale
problems. A natural framework for solving optimization problems with generalized orthogonality constraints
is Riemannian optimization [4, 5, 6]. Indeed, when we have a single generalized orthogonality constraint of
the form XTBX = Ip, e.g., we want to minimize f(X) s.t. XTBX = Ip, one can impose the structure of a
smooth manifold on the constraint set, thereby obtaining the generalized Stiefel manifold

StB(p, d) :=
{
X ∈ Rd×p : XTBX = Ip

}
. (1.1)

(see [5, Propositions 3.3.3 and 3.3.4]), and use Riemannian optimization to minimize f(X) s.t. X ∈
StB(p, d). If we have k > 1 generalized orthogonality constraints , e.g., minimizing f(X1, . . . , Xk) s.t.
Xi ∈ StB(pi, di) (i = 1, . . . , k), as is the case in CCA (for k = 2), then each of the constraints constrain
a disjoint set of variables, and the constraints are separable, so they define a product of generalized Stiefel
manifolds, which is a smooth manifold as well, so Riemannian optimization can again be used.

In order to use Riemannian optimization on the generalized Stiefel manifold StB(p, d) we must further
impose a Riemannian metric on the tangent bundle of StB(p, d). We refer to the Riemannian metric naturally
inherited by the scaled inner product 〈U, V 〉B = Tr

(
UTBV

)
on Rd×p as the standard metric for (see [5,

Section 3.6] for explanation on how a Riemannian metric is inherited from an ambient space in a natural way).
Indeed, for the Stiefel manifold, i.e., when B = Id, reference to the last metric as the standard metric appears
in the seminal work of Edelman, Arias and Smith [4], and this is also the metric used in the implementation
of the generalized Stiefel manifold in Manopt [7]. Some of the geometric components for working with
StB(p, d) equipped with the standard metric appear in [4, Section 4.5], while Manopt implements all the
geometric components, but without providing a reference.

This paper is motivated by the observation that using the standard metric in the context of Riemannian
optimization with generalized orthogonality constraints has one severe shortcoming: the computations of some
of the geometric components necessary for Riemaniann optimization on the generalized Stiefel manifold, e.g.,
the Riemannian gradient and Hessian, require taking products with the inverse of B. Oftentimes, computing
B and its inverse is as expensive as the direct method. In such cases there is no reason to use Riemannian
optimization as long as the standard metric, 〈U, V 〉B = Tr

(
UTBV

)
, is used. Another issue with using the

standard metric is that in some cases it is suboptimal and using it will lead to slow convergence.
In this paper we propose to endow StB(p, d) with a metric inherited by the inner product 〈U, V 〉MX

=

Tr
(
UTMXV

)
on Rd×p for some smooth mapping X 7→ MX that maps a X ∈ StB(p, d) to an SPD matrix

MX . Using such a mapping is an instance of so-called Riemannian preconditioning [8], so we call the mapping
X 7→MX a preconditioning scheme. Indeed, using the metric defined by the mapping X 7→MX still requires
computing MX in every iteration, and taking products with its inverse, however one is free to design the
mapping so thatMX can always be cheaply decomposed. On flip side, as we discuss later, one would likeMX

to well approximate B, or some other matrix for which we can ensure well conditioning of the Riemannian
Hessian at the optimum. Thus in designing the mapping X 7→ MX we have the same tradeoffs as when
designing a preconditioner for solving linear systems using a Krylov method.

In order to use Riemannian optimization with a preconditioning scheme, one needs to implement all
the necessary geometric components for Riemannian optimization on StB(p, d) endowed with the metric
defined by X 7→ MX . The majority of this paper is devoted to developing these geometric components.
We complement these developments by considering the use of our approach on a couple of simple theoretical
examples, and on the problem of finding the top canonical correlation between two datasets (which we explore
both theoretically and numerically).

1.1 Related Work
Riemannian Optimization. Riemannian optimization is an approach for solving constrained optimization
problems in which the constraints form a smooth manifold (e.g., nonlinear differentiable equality constraints).
It is based on extending classical algorithms for unconstrained optimization on Rn (or any other vector space
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equipped with an inner product), by generalizing the main components needed to apply these algorithms to
search spaces that form smooth manifolds. Some early works are [9, 10, 11]. A more recent and detailed
introduction can be found in [5] and in [6].

Riemannian Optimization on the (Generalized) Stiefel Manifold. Optimization with orthogonality
constraints are prevalent in many applications across science, naturally giving rise to Riemannian optimization
on the (generalized) Stiefel manifold. Using Riemannian optimization to solve problems with orthogonality
constraints was considered in the seminal work of Edelman et al. [4], and in particular the components
of the Stiefel manifold were developed with the standard (and also the canonical) metric. Some recent
works include [12, 13, 14], where the Cayley transform is used to define a retraction map which leads to
more efficient algorithms. Another improved retraction computation is proposed in [15], where Sato and
Aihara proposed a Cholesky QR-based retraction on the generalized Stiefel manifold. In [16], Kaneko et
al. presented algorithms to compute inverses of several retractions on the Stiefel manifold in order to solve
empirical arithmetic averaging problems over the Stiefel manifold. Also, several optimization algorithms for
non-smooth optimization were developed on the Stiefel manifold such as a proximal gradient method and
a fast iterative shrinkage-thresholding algorithm (FISTA [17]), see for example [18, 19, 20]. Also in the
context of this paper, a Riemannian optimization approach for adaptive CCA on a product manifold of two
generalized Stifel manifolds was proposed in [21]. In addition, components for the complex Stiefel manifold
with the standard metric were developed in several works , e.g., [22, 23, 24, 25]. Unlike in our work, all
the aforementioned works only use either the standard or the canonical [4] metrics when optimizing on the
(generalized) Stiefel manifold.

Riemannian Preconditioning. In the context of Riemannian optimization, it is well-known that the con-
dition number of the Riemannain Hessian at the optimum is highly indicative of the asymptotic convergence
rate of Riemannian optimization (e.g., [5, Theorem 4.5.6, Theorem 7.4.11 and Eq. (7.50)]). If the objective
function is convex (in the Riemannian sense [26, Chapter 3.2]) then there also exist global convergence results
depending on the condition number of the Riemannian Hessian at all the points on the manifold (e.g., [26,
Chapter 7, Theorem 4.2]), however these results are not applicable to optimization on the generalized Stiefel
manifold, since every continuous and convex function (in the Riemannian sense) on the Stiefel manifold is
constant.

The relation between convergence rate and condition number of the Riemannian Hessian at the optimum
motivates adjusting the metric based on the cost or constraints, and this approach to preconditioning was
presented in several works, see e.g., [27, 28, 29, 30]. Most of the aforementioned works attempt to lower
the condition number of the Riemannian Hessian at the optimum by approximating the Euclidean Hessian
of the cost function. However, it is possible for the Riemannian Hessian and the Euclidean Hessian to be
very far from each other even for simple examples (see Section 4). In [8], Mishra and Sepulchre showed that
carefully selecting the metric based on both the cost and the constraint (inspired by the Lagrangian) used
in Riemannian optimization affects convergence [8] of Riemannian steepest-descent (the iterations become a
version of Riemannian quasi-Newton close to the optimum). They demonstrated this technique on a quotient
manifold (generalized Grassmann manifold) and on the fixed-rank manifold. Unlike [8], we do not commit
to a specific structure of the metric, as long as it is inherited from the ambient space. Our framework is
suitable for the use of the metrics presented in [8], but also allows to use easier to compute metrics. Moreover,
we develop explicit components of Riemannian optimization on the generalized Stiefel manifold with non-
standard metric and consider their costs with respect to the choice of metric (see Section 3). This allows the
use of various algorithms for smooth Riemannian optimization, e.g, conjugate-gradient, trust-region, etc. We
also motivate the choice of metric by the condition number of the Riemannian Hessian at the optimum.

Another similar view of Riemannian preconditioning in the sense of Riemannian metric selection, which is
specific for the Riemannian trust-region algorithm, is to precondition the solver used to solve the Trust-Region
Subproblem [31]. The aforementioned preconditioning approach generalizes the preconditioning strategy for
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the unconstrained trust-region problem. Another example of using Riemannian preconditioning for the Trust-
Region Subproblem can be found in [32].

A different approach for preconditioning of Riemannian methods can be found in [33] where linear sys-
tems with tensor product structure are considered. That paper proposed a Riemannian analogue to the
preconditioned Richardson method for Euclidean optimization based on the truncated Richardson iteration.
Similarly to Euclidean Preconditioned Richardson, in each iteration the search direction is multiplied by an
inverse of an SPD preconditioner (and then projected to the tangent space). Another method proposed in
[33] is an approximate Riemannian Newton method where the search direction is determined by an equation
involving an approximation to the Riemannian Hessian (known as constrained Gauss–Newton, see e.g., [34]),
and a preconditioning term replacing a component in that equation.

2 Preliminaries

2.1 Notation and Basic Definitions
We denote scalars using lower case Greek letters or using lower case English letters x, y, . . . . Vectors are
explicitly defined and also denoted by x, y, . . . . Matrices are denoted by A,B, . . . or upper case Greek
letters. Tangent vectors (of a manifold) are denoted using lower case Greek letters with a subscript for the
point on the manifold to which they correspond (e.g., ηx). Normal vectors (of a manifold) are denoted using
lower and upper case English letters with a subscript for the point on the manifold to which they correspond
(e.g., ux). Vector fields on a manifold are denoted using lower case Greek letters with brackets indicating the
point on the manifold to which they correspond (e.g., η(x)). Normal vector fields on a manifold are denoted
using lower and upper case English letters with brackets indicating the point on the manifold to which they
correspond (e.g., u(x)). We use the convention that vectors are column-vectors.

We denote by 〈·, ·〉C the inner product with respect to a matrix C: for vectors u and v, 〈u, v〉C := uTCv,
and for matrices U and V , 〈U, V 〉C := Tr

(
UTCV

)
where Tr (·) denotes the trace operator. The s×s identity

matrix is denoted Is. The s× s zero matrix is denoted 0s. We denote by Ssym(p) and Sskew(p) the set of all
symmetric and skew-symmetric matrices (respectively) in Rp×p.

Given a d × d matrix A we denote by sym(A) :=
(
A+AT

)
/2 and by skew(A) :=

(
A−AT

)
/2 the

symmetric and skew-symmetric (respectively) components of A. We describe a diagonal matrix using diag (·)
where the diagonal components appear in the parenthesis, and similarly block diagonal matrices are described
using blkdiag (·). For an SPD matrix B ∈ Rd×d, we denote by B1/2 the unique SPD matrix such that
B = B1/2B1/2. This matrix is obtained by keeping the same eigenvectors and taking the square root of the
eigenvalues. We denote the inverse of B1/2 by B−1/2.

Let A be a symmetric d × d matrix. We use λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A) to denote the eigenvalues of
A, and use κ(A) to denote the condition number of A, which is the ratio between the largest and smallest
eigenvalues in absolute value. Let B ∈ Rd×d be another symmetric positive semi-definite matrix, and assume
that ker(B) ⊆ ker(A). If for λ ∈ R and v /∈ ker(B) it holds that Av = λBv then λ is a generalized eigenvalue
and v is a generalized eigenvector of the matrix pencil (A,B). We use the notation λ1(A,B) ≥ λ2(A,B) ≥
· · · ≥ λrank(B)(A,B) to denote the generalized eigenvalues of (A,B). The (generalized) condition number
κ(A,B) of the pencil (A,B) is the ratio between the largest and smallest generalized eigenvalues in absolute
value. If B is also non-singular, that is B is an SPD matrix, then it holds that κ(A,B) = κ(B−1/2AB−1/2).

We denote by StB(p, d) the generalized Stiefel manifold defined by (1.1). StB(p, d) is a submanifold of
Rd×p. Given a function or vector field defined on StB(p, d), we use a bar decorator to denote a smooth
extension of that object to the entire Rd×p, either by committing to a specific extension, or making sure that
any statement made afterwards holds for any such smooth extension. For example, given a smooth objective
function f : StB(p, d) → R, we use f̄ : Rd×p → R to denote a smooth real-valued function defined on Rd×p
whose restriction to StB(p, d) is f .
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For p = 1, we denote by SB the d− 1 dimensional ellipsoid defined by

SB :=
{
x ∈ Rd : xTBx = 1

}
.

In the special case B = Id, we denote by St(p, n) the Stiefel manifold defined by

St(p, d) :=
{
X ∈ Rd×p : XTX = Ip

}
.

Given an SPD matrix B ∈ Rd×d, we say that a decomposition A = QR of A ∈ Rd×p where Q ∈ Rd×p
and R ∈ Rp×p is a thin B-QR decomposition of A if Q ∈ StB(p, d) and R ∈ Rp×p is an upper triangular
matrix. Note that the standard thin QR decomposition ([35, 36, Chapter 5 and Lecture 7]) is a thin Id-
QR decomposition. Moreover, the thin B-QR decomposition can be obtained using a standard thin QR
decomposition of the matrix B1/2A. Indeed, if B1/2A = QR with Q ∈ St(p, d) then A = (B−1/2Q)R and
B−1/2Q ∈ StB(p, d). The thin QR decomposition is unique if A is full rank and we require R to have strictly
positive diagonal elements ([35, 36, Theorem 5.2.2 and Theorem 7.2]). Consequently, we also have that the
thin B-QR decomposition is unique if A is full rank and we require R to have strictly positive diagonal
elements. In that case, we denote by qfB (A) the unique Q factor of the thin B-QR decomposition. For
the thin Id-QR decomposition we abbreviate qf (A) := qf Id (A). Using this notation we have the following
relation [15]:

qfB (A) = B−
1/2qf

(
B

1/2A
)
.

2.2 Riemannian Optimization
In this section we recall some basic definitions of Riemannian optimization, and establish corresponding
notations. A Riemannian manifold M is a real differentiable manifold M with a smoothly varying inner
product gx on tangent spaces TxM (where x ∈ M). A Riemannian manifold (M, g) is a Riemannian
submanifold of another Riemannian manifold (M̄, ḡ), ifM is a submanifold of M̄ and it inherits the metric
in a natural way: gx(ηx, ) = ḡx(ηx, ) for ηx,∈ TxM where in the right-side ηx and are viewed as elements in
TxM̄ (this is possible sinceM is a submanifold of M̄). The former notion is useful when the search space is
embedded in a larger space and the objective function is given in the coordinates of the embedding space.

The fundamental idea in Riemannian optimization algorithms is to locally approximate the constraint
manifold by its tangent space at every iteration. Each iterate on the tangent space minimizes some model
of the cost function, and then (possibly after several steps on the tangent space, e.g., [37, 38]) translates
to the manifold using the retraction mapping Rx : TxM → M [5, Section 4.1]. Manipulation of tangent
vectors from different tangent spaces is performed via the vector transport τηx ∈ TRx(ηx)M [5, Section 8.1].
In particular, the exponential mapping [5, Section 5.4] and parallel translation [5, Section 5.4] are examples
of retraction and vector transport based on geodesics. Note that computing them is costly, since it requires
solving a system of differential equations which might be solvable only numerically.

The notions of Riemannian gradient and Riemannian Hessian [5, Section 3.6 and 5.5] generalize the
corresponding concepts from the Euclidean setting. The Riemannian gradient is used for finding critical
points, while the Riemannian Hessian classifies them. Moreover, (asymptotic) convergence of Riemannian
methods is governed by the condition number of the Riemannian Hessian at the optimal point.

For a smooth (objective) function defined on the manifold, f :M→ R, denote the Riemannian gradient
and Riemannian Hessian at x ∈ M by gradf(x) ∈ TxM and Hessf(x) : TxM → TxM respectively.
Roughly speaking, the Levi-Civita (Riemannian connection) ∇ of (M, g) generalizes the notion of directional
derivative of vector fields.

With these components, various optimization algorithms are naturally generalized from the Euclidean
setting to the Riemannian setting (e.g., [5, 6] for an extensive overview of smooth techniques, and [39, 40,
18, 19, 20] for some examples of non-smooth algorithms). For example, a variant of Riemannian gradient
descent is

xk+1 = Rxk(−αkgradf(xk))
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where αk is the step size (possibly chosen by the Armijo’s backtracking procedure; see [5, Algorithm 1]).

3 Preconditioned Geometric Components for the Generalized Stiefel
Manifold

In this section we describe the necessary geometric components required for Riemannian optimization on
StB(p, d) with a preconditioned Riemannian metric. In the following, B ∈ Rd×d is an SPD matrix and we
treat StB(p, d) as an embedded submanifold of Rd×p. Unlike previous articles in the literature, we allow for
a wider array of Riemannain metrics on StB(p, d), i.e., the metric is defined via a preconditioning scheme
X 7→MX . We refer to the components we develop as preconditioned geometric components for StB(p, d). In
the following, we refer to Rd×p as the ambient space. It is important to stress that all our formulas are given
in ambient space coordinates, and not in some local coordinates of the manifold StB(p, d).

In terms of computational costs of the geometric components, we remark that an important feature of the
components we develop is that they access B only via matrix-matrix products. In particular, the formulas do
not involve B−1 but ratherM−1

X . In quite a few problems involving generalized orthogonality constraints, the
matrix B is given in a (semi-)implicit form, and it is desirable to avoid computing it. In many applications,
just forming B is as expensive as using a direct method. However, to use the preconditioned geometric
components one can avoid computing B.

3.1 Metric Independent Notions
We first describe notions that are independent of the metric. This is not our main contribution, as most of the
following definitions and formulas are well known (see e.g., [21, 15, 13, 16, 14, 20]); we include these definitions
and formulas, and their derivations (which appear in the appendix), for completeness. Additionally, most
of the formulas in this section can be derived via the known components of the Stiefel manifold [5] via the
change of variables X̂ = B1/2X.

We remark that the formulas for the inverses of various retractions do not appear in the previous literature.
However, for the most part they too are simple generalizations of formulas for the Stiefel manifold, which are
derived in [4, 5, 13, 14]. The inverse retraction is used in several recent algorithms proposed in the literature:
Riemannian CG with inverse retractions [41], Riemannian FISTA [20], and empirical arithmetic averaging
over the Stiefel manifold [16].

The tangent space of StB(p, d) at X ∈ StB(p, d), viewed as a subspace of TXRd×p ' Rd×p, is

TXStB(p, d) =
{
Z ∈ Rd×p : ZTBX +XTBZ = 0p

}
. (3.1)

To explain (3.1), note that StB(p, d) is the kernel of F (X) = XTBX−Ip which is a submersion [5, Proposition
3.3.3] (see further details in Appendix A.1). F is a symmetric matrix valued function, so the dimension of
the tangent space (and, as such, the manifold itself) is dp− p(p+ 1)/2.

Obviously, if Z ∈ TXStB(p, d) then the matrix XTBZ is skew-symmetric. Thus, a different characteriza-
tion of TXStB(p, d) is as a decomposition of every tangent vector into a sum of a product of a skew-symmetric
matrix with X, and a term whose columns are B-orthogonal to the columns of X:

TXStB(p, d) =
{
Z = XΩ +XB⊥K ∈ Rd×p : Ω ∈ Sskew(p), K ∈ R(d−p)×p

}
, (3.2)

where Ω is a skew-symmetric matrix (i.e., ΩT = −Ω), K is arbitrary, and XB⊥ ∈ Rd×(d−p) satisfies that its
columns are an orthonormal basis for the orthogonal complement of the column space of X with respect to
the matrix B, i.e., XT

B⊥BXB⊥ = Id−p, and XT
B⊥BX = 0(d−p)×p.

There are several known retraction mappings suitable for the generalized Stiefel manifold. We mention
three of them (not including the exponential map which is presented later and is also a retraction). The
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first retraction mapping is based on the polar decomposition of the matrix X + ξX with respect to the inner
product defined by the matrix B (i.e., decomposition of a matrix A = QP where Q ∈ StB(p, d) and P is an
SPD matrix of the size p× p; one such decomposition is P =

(
ATBA

)1/2 and Q = A
(
ATBA

)−1/2):

Rpolar
X (ξX) := (X + ξX)(Ip + ξTXBξX)−

1/2, (3.3)

where ξX ∈ TXStB(p, d). As for the arithmetic complexity, once BξX has been computed, we can compute
Rpolar
X (ξX) in O(dp2) operations.
Given Y ∈ StB(p, d) close enough to X, the inverse of the polar retraction is

Rpolar−1

X (Y ) := Y Z −X, (3.4)

where Z is the unique SPD solution of the following Lyapunov equation

2Ip = XTBY Z + ZY TBX. (3.5)

Thus, once BX is computed we can compute Rpolar−1

X (Y ) using O(dp2) operations. The expression for the
inverse retraction in (3.4) is valid when the Lyapunov (3.5) has a unique SPD solution. If Y = Rpolar

X (ξX) for
some ξX , then (3.4) has an SPD solution Z = (Ip+ξTXBξX)−1/2 (see Appendix A.1 for more details). Let us
now consider when (3.4) has a unique solution. It has a unique solution if and only if XTBY and −Y TBX
do not share any eigenvalue [42, Theorem 2.4.4.1]. Both XTBY and −Y TBX are invertible since they are
products of full rank matrices, thus all eigenvalues are not equal to zero. Next recall that XTBX = Ip, and
that eigenvalues of a matrix are a continuous function of the matrix. Using the Bauer–Fike theorem [43]
for a small enough perturbation of the matrix XTBX, i.e., XTBX + δXTBX = XTBY , the eigenvalues
of XTBY do not differ from the eigenvalues of XTBX more than the norm of the perturbation. Thus, the
real part of the eigenvalues of XTBY remains strictly positive, leading to XTBY and −Y TBX not sharing
any eigenvalue. The validity of (3.4) is the intersection of the image of Rpolar

X (·) and a neighborhood of X
in which (3.5) has a unique solution.

The second retraction mapping is based on the QR decomposition with respect to the matrix B:

RQR
X (ξX) := qfB (X + ξX) = B−

1/2qf
(
B

1/2 (X + ξX)
)
, (3.6)

where ξX ∈ TXStB(p, d) [15]. One can show that if RTR = (X+ξX)TB(X+ξX) is a Cholesky decomposition
then qfB (X + ξX) = (X + ξX)R−1, so once B(X + ξX) has been computed we can compute RQR

X (ξX) using
O(dp2) operations [15].

Given Y ∈ StB(p, d) close enough to X the inverse of the QR-based retraction is

RQR−1

X (Y ) := Y R−X, (3.7)

where R is the unique upper-triangular p × p matrix with strictly positive elements on its main diagonal
which is a solution for the following Lyapunov-like equation:

2Ip = XTBY R+RTY TBX. (3.8)

Solving this equation takes O(p4) operations [16]. Thus, once BX is computed we can compute RQR−1

X (Y )
using O(p4 + dp2) operations. Note that this equation has a solution for Y = X, which is R = I. Then,
by continuity arguments, if Y is close enough to X, a solution exists. To show uniqueness of solution, we
use [16, Eq. (14) and Algorithm 1]. According to Kaneko et al., using the constraint that R is upper-
triangular we can reformulate (3.8) as an equivalent set of linear equations which has a unique solution
if and only if all the principal minors of XTBY are non-singular (see Appendix (A.1)). Similarly to the
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argument for inverse of the polar inverse retraction, since XTBX = Ip, for a small enough perturbation, i.e.,
XTBX + δXTBX = XTBY , the real part of the eigenvalues of XTBY remains strictly positive, leading
to non-singularity of XTBY . Note that in order to have consistency, it is also required that the diagonal
elements of R are strictly positive. Again, using a similar continuity arguments we can achieve such a solution
if Y is close enough to X. The validity of (3.7) is the intersection of the image of RQR

X (·) and a neighborhood
of X in which (3.8) has a unique solution.

The third retraction mapping is based on the Cayley transform with respect to the matrix B (a general-
ization of the retraction presented in [16]):

RCayley
X (ξX) :=

(
Id −

1

2
W (ξX)

)−1(
Id +

1

2
W (ξX)

)
X, (3.9)

where
W (ξX) := (Id −

1

2
XXTB)ξXX

TB −XξTX(Id −
1

2
BXXT)B.

Once the multiplications with B are computed, we need to compute the inverse of a d× d matrix in order to
find RCayley

X (ξX). However, noticing that

W (ξX) =
[

(Id − 1
2XX

TB)ξX X
] [ XT

−ξTX(Id − 1
2XX

TB)T

]
B,

(i.e., a product of a d× 2p matrix by a 2p× d matrix), we can use the Sherman-Morrison-Woodbury formula
to only invert a 2p× 2p matrix. A closed form for the inverse of this retraction is only known when d is even
[16].

Similarly, there are several possible ways to compute a vector transport. It is possible to define a metric
independent vector transport, using [5, Equation 8.6] by differentiating a retraction mapping

τ (ind)
ηX ξX := DRX(ηX)[ξX ].

In Appendix A.2, we derive concrete formulas based on the polar and QR retractions, (3.3) and (3.6). A
vector transport based on the Cayley retraction is presented in [13]. The various vector transport have the
same computational cost as computing the corresponding retractions. Note that it is also possible to define
another vector transport that has this property by simply applying the projection on the tangent space.
However, this vector transport is metric dependent, so we discuss it in the next subsection.

3.2 Metric Related Notions
This subsection is the main contribution of our paper. In this subsection we derive explicit formulas for the
orthogonal projection with respect to the Riemannian metric, the Riemannian gradient and Hessian with
respect to the non-standard metric which allow the use of various preconditioned Riemannian algorithms.
Note that the formulas in this subsection, unlike the previous one, cannot be derived via a change of variables
X̂ = B1/2X unless a specific metric is used (corresponding to MX = B for all X ∈ StB(p, d)), since though
this change of variables makes X̂ ∈ St(p, d), the induced metric on that manifold is not the standard metric.
Note that if indeed MX = B for all X ∈ StB(p, d), then via the change of variables X̂ = B1/2X we have that
X̂ ∈ St(p, d) with the corresponding standard metricMX̂ = I for all X̂ ∈ St(p, d). Unfortunately, the change
of variables X̂ = B1/2X forces us to form B explicitly, which is prohibited in problems where computing B
is as expensive as solving them with a direct method.

Specifically, we define a Riemannian metric on the ambient space Rd×p, and this uniquely defines a metric
on StB(p, d) that makes it a Riemannian submanifold. The metric we define on Rd×p is

ḡX(ξ̄X , η̄X) :=
〈
ξ̄X , η̄X

〉
MX

= Tr
(
ξ̄TXMX η̄X

)
8



where X 7→ MX is a smooth mapping on Rd×p (thus, the metric varies smoothly with X making it a
Riemannian metric), and each MX is assumed to be an SPD matrix so that we have a properly defined inner
product on each tangent space, and a Riemannian metric for Rd×p. Now, for any X ∈ StB(p, d), ξX , ηX ∈
TXStB(p, d), given in ambient space coordinates, the Riemannian metric on StB(p, d) is given by

gX(ξX , ηX) := 〈ξX , ηX〉MX
= Tr

(
ξTXMXηX

)
. (3.10)

The cost of computing gX(ξX , ηX) is O (TMp+ dp) where TM is the maximal cost (possibly after preprocess-
ing) of taking the product with MX with a vector for all X.

The metric selection is how we propose to incorporate a preconditioner, and so the mapping X 7→ MX

is termed a preconditioning scheme. It should be chosen so that the Riemannian Hessian at the optimum
is well conditioned. We discuss this further in Subsection 3.5. Classically, the metric employed for the
generalized Stiefel manifold corresponds to MX = B for all X ∈ StB(p, d) [4]. In quite a few applications
this choice minimizes a-priori bounds on the condition number of the Riemannian Hessian at the optimum (see
Subsections 3.5 and 4.2). However, as we shall see, various operations required for Riemannian optimization
require products with M−1

X , and in many applications this results in algorithms that are too expensive when
MX = B for some X ∈ StB(p, d). In such cases, there is a need to balance in the chosen X 7→ MX

between minimizing the condition number, and efficient products with M−1
X . This is a typical trade-off for

preconditioning.
After defining the Riemannian metric we can derive the metric related notions required for Riemannian

optimization. Since StB(p, d) is an embedded submanifold of Rd×p, the orthogonal projection on the tangent
space with respect to the Riemannian metric is a key component. We denote the orthogonal projection
operator on TXStB(p, d) by ΠX (·), and the orthogonal projection operator (with respect to the metric
defined by X 7→MX) on the normal space, (TXStB(p, d))

⊥, by Π⊥X (·).
In order to find analytic formulas for these operators, we first note that the normal space is:

(TXStB(p, d))
⊥

=
{
M−1
X BXS : S ∈ Ssym(p)

}
. (3.11)

Indeed, recall that Tr
(
STΩ

)
= 0 for any symmetric matrix S and anti-symmetric matrix Ω, thus by using

the representation in (3.2) of tangent vectors we get that any vector of the formM−1
X BXS where S ∈ Ssym(p)

is orthogonal to the tangent space at X ∈ StB(p, d). The dimension of the normal space should be p(p+1)/2,
thus since the set

{
M−1
X BXS : S ∈ Ssym(p)

}
is p(p+ 1)/2 dimensional, it is indeed the normal space.

The following lemma gives a formula for the orthogonal projections to the tangent and normal spaces.

Lemma 3.1. The orthogonal projections with respect to gX(·, ·) on (TXStB(p, d))
⊥ and on TXStB(p, d)

(viewed as a subspace of TXRd×p ' Rd×p and given in ambient coordinates) are:

Π⊥X (ξX) = M−1
X BXSξX (3.12)

and

ΠX (ξX) =
(
idTXRd×p −Π⊥X

)
(ξX) = ξX −M−1

X BXSξX (3.13)

where ξX ∈ TXRd×p, idTXRd×p denotes the identity mapping on TXRd×p, and SξX ∈ Rp×p is the unique
solution of the following Sylvester equation(

XTBM−1
X BX

)
SξX + SξX

(
XTBM−1

X BX
)

= XTBξX +
(
XTBξX

)T
.

The cost of computing (in ambient coordinates) ΠX (ξX) for an arbitrary ξX is O(TBp+TM−1p+dp2), where
TB and TM−1 are the cost of computing the product of B with a vector and the maximal cost of taking the
product with M−1

X with a vector for all X ∈ StB(p, d).
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Proof. Note that TXStB(p, d) � (TXStB(p, d))
⊥

= TXRd×p ' Rd×p. This implies that for any ξX ∈
TXRd×p ' Rd×p there exists unique ΩξX ∈ Sskew(p), KξX ∈ R(d−p)×p and SξX ∈ Ssym(p) such that ξX
is decomposed to a unique component on the tangent space of StB(p, d) and a unique component on the
normal space of StB(p, d):

ξX = ΠX (ξX) + Π⊥X (ξX) = (XΩξX +XB⊥KξX ) +M−1
X BXSξX . (3.14)

By left-multiplying (3.14) by XTB, we get

XTBξX = ΩξX +XTBM−1
X BXSξX .

Summing XTBξX +
(
XTBξX

)T, and using the fact that ΩξX is skew-symmetric so it vanishes in the sum,
we get that SξX solves the following Sylvester equation ([42, Subsection 2.4.4]):

XTBξX +
(
XTBξX

)T
=
(
XTBM−1

X BX
)
SξX + SξX

(
XTBM−1

X BX
)
. (3.15)

Indeed, according to [42, Theorem 2.4.4.1] there is a unique solution to (3.15) for any XTBξX +
(
XTBξX

)T,
since

(
XTBM−1

X BX
)
is positive definite (XTBM−1

X BX is a Gram matrix of M−
1/2

X BX, which consists
of a product of three matrices, two invertible matrices M−

1/2
X and B, and one full-column rank matrix

X ∈ StB(p, d)) and−
(
XTBM−1

X BX
)
is negative definite, thus both matrices have no eigenvalues in common.

Solving (3.15) costs O(p3) assuming we already computed XTBM−1
X BX. Furthermore, as expected SξX is

symmetric since ST
ξX

again satisfies (3.15), and the solution to the equation is unique.
After obtaining SξX by solving (3.15), analytical expressions for the orthogonal projections on the normal

space and the tangent space are given by (3.12) and (3.13).
Note that the orthogonal projection on the normal space and the tangent space satisfy the definition of

an orthogonal projection with respect to the inner product defined on Rn×p with the matrix MX . Indeed,
both projections satisfy the projection property Π2

X (·) = ΠX (·) and
(
Π⊥X
)2

(·) = Π⊥X (·), since Sξ
Π⊥
X(ξX)

and
SξX satisfy the same Sylvester equation. In addition, both projections are orthogonal with respect to the
inner product defined on Rn×p with the matrix MX , i.e.,

gX(ΠX (ξX) , ηX) = gX(ξX ,ΠX (ηX)), gX(Π⊥X (ξX) , ηX) = gX(ξX ,Π
⊥
X (ξX)) (3.16)

for all ξX , ηX ∈ Rn×p, since by using the properties of the trace operator.
The cost of computing (in ambient coordinates) ΠX (ξX) for an arbitrary ξX is O(TBp + TM−1p + dp2).

Indeed, after obtaining SξX by solving a Sylvester equation which costs O(p3), we are left with taking product
of B and M−1

X with matrices, and products of matrices of the dimensions p× d by d× p , d× p by p× p and
p× p by p× p.

In the special case where MX = B for all X ∈ StB(p, d), StB(p, d) is isometric to St(p, d) via the change
of variables X̂ = B1/2X. The orthogonal projections on the normal space (3.12) and on the tangent space
(3.13) are reduced to a generalization of the orthogonal projection on the tangent space of the Stiefel manifold
[5, Example 3.6.2]:

Π⊥X (ξX) = Xsym
(
XTBξX

)
(3.17)

and

ΠX (ξX) =
(
idTXRd×p −Π⊥X

)
(ξX) =

(
Id −XXTB

)
ξX +Xskew

(
XTBξX

)
. (3.18)

In such case, the cost of computing (in ambient coordinates) ΠX (ξX) for an arbitrary ξX is O(TBp + dp2).
The cost is evident from the formulas once we observe that none of the operations require forming B, but
instead require taking product of B with a matrix of p columns.
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Using the orthogonal projection we can also propose a simple metric dependent vector transport using
the vector transport definition on Riemannian submanifolds [5, Subsection 8.1.3]:

τ (dep)
ηX ξX := ΠRX(ηX) (ξX) , (3.19)

where RX(·) is a retraction mapping of our choice, e.g., (3.3), (3.6) or (3.9).
Let f : StB(p, d) → R be a smooth function, and let f̄ be a smooth extension of f to Rd×p (typically, f

is given in ambient coordinates, thereby making the extension f̄ natural). We now develop first and second
order Riemannian components for f . The Riemannian gradient is an element of the tangent space, and to
derive an analytic formula for it we use [5, Eq. 3.37]: the Riemannian gradient can be computed by computing
the Riemannian gradient in Rd×p of f̄ , and orthogonally projecting it with respect to the Riemannnian metric
to the tangent space of StB(p, d) using the orthogonal projection on the tangent space, ΠX (·). In short,
gradf(X) = ΠX

(
gradf̄(X)

)
. First, we consider gradf̄(X). Note that it is not the Euclidean gradient

∇f̄(X), even though f̄ is defined on Rd×p. The reason is that f̄ is defined on a Rd×p endowed with a
non-standard inner product. According to [5, Eq. 3.31], we have

Tr
(
gradf̄(X)TMXξX

)
= gX(gradf̄(X), ξX) = Df̄(X)[ξX ] = Tr

(
∇f̄(X)TξX

)
for every ξ̄X ∈ TXRd×p (in the above, Df(X) denotes the (Frechet) differential of f at X), so gradf̄(X) =
M−1
X ∇f̄(X). Thus, we have

gradf(X) = ΠX

(
M−1
X ∇f̄(X)

)
. (3.20)

The cost of computing the Riemannian gradient given the Euclidean gradient of f̄ is the cost of computing
the orthogonal projection on the tangent space, and taking the product of ∇f̄(X) and M−1

X .
The components developed so far, allow the application of any first order Riemannian optimization al-

gorithm, e.g., Riemannian gradient and Riemannian conjugate-gradient. In order to apply second-order
methods, e.g., Riemannian Newton and Riemannian trust-region, the Riemannian Hessian must also be de-
rived. An expression for the Riemannian Hessian is also useful for reasoning on the convergence rate by
examining the condition number of the Hessian at the optimum. However, any expression for the Rieman-
nian Hessian must depend on the specifics of the mapping of X to MX . Thus, we focus on the simpler case
where MX = M , i.e. MX is constant for all X ∈ StB(p, d)). This is a reasonable choice for a preconditioning
metric since it still allows the use of different cheap-to-invert constant approximations of B (see Subsection
4.2 for an example).

Recall that in [5, Proposition 5.5.6], it is shown that at a critical point X?, i.e. gradf(X?) = 0, the
Riemannian Hessian equals to the Riemannian Hessian of a composition of the cost function with a retraction
map (known in the literature as the pullback function). The pullback function is a function from the tangent
space which is a Euclidean space to R, thus its Riemannian Hessian is the Euclidean Hessian. In addition,
retraction maps typically do not depend on the choice of the Riemannian metric. Therefore, the Euclidean
Hessian of the pullback function only depends on the Riemannian metric at a critical point through the
directional derivative of Riemannian gradient of the pullback function on the tangent space at the critical
point. Thus, the formula we derive for the Riemannian Hessian in ambient coordinates is valid at a critical
point X? when using any preconditioning scheme X 7→MX as well if we setM = MX? . This property allows
the analysis of the condition number of the Riemannian Hessian at the critical points with a preconditioning
scheme X 7→ MX , giving indication for the asymptotic convergence of Riemannian optimization algorithms
(e.g., [5, Theorem 4.5.6, Theorem 7.4.11 and Eq. (7.50)]).

The Riemannian Hessian of f at a point on the manifold is a linear transformation from the tangent
space to itself. When MX = M for all X ∈ StB(p, d), we can compute the result of applying the Riemannian
Hessian to a tangent vector in ambient coordinates via the formula [44]:

Hessf(X)[ηX ] = ΠX(M−1∇2f̄(X)ηX) +WX(ηX ,Π
⊥
X(M−1∇f̄(X))) (3.21)

where ∇2f̄(X) is the Euclidean Hessian of f̄ and WX is the Weingarten map on StB(p, d). The Weingarten
map is an operator that takes as arguments a tangent vector ηX ∈ TXStB(p, d) and a normal vector UX ∈
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(TXStB(p, d))
⊥ and returns a tangent vector. An analytic formula for Weingarten map on StB(p, d), in

ambient coordinates, is
WX (ηX , UX) = −ΠX

(
M−1BηX

(
XTMUX

))
.

The derivation of (3.21) is based on Lemma A.2. The complete derivation of the Riemannian connection,
the Weingarten map, and the Riemannian Hessian appears in Appendix A.2. Based on these formulas, we
have the following formula for the Riemannian Hessian when MX = M for all X:

Hessf(X)[ηX ] = ΠX

(
M−1∇2f̄(X)ηX −M−1BηX

(
XT∇f̄(X)−XTMgradf(X)

))
. (3.22)

The cost of applying the Riemannian Hessian to a tangent vector given the Euclidean Hessian of f̄ is the cost
of computing the orthogonal projection on the tangent space, and taking the products with B, M and M−1.

Exponential Map. An important metric related retraction map on a Riemannian manifold is the ex-
ponential mapping. According to [5, Proposition 5.4.1], the exponential map induced by the Riemannian
connection defined on the manifold is a retraction map, termed the exponential retraction. In particular, the
exponential map is based on moving on geodesic curves in the direction of a tangent vector. In the derivation
of the exponential map we assume MX = M for all X ∈ StB(p, d).

First, let us recall the definition of a geodesic curve. A geodesic γ(t) on a manifold M endowed with a
Riemannian connection ∇ is a curve with zero acceleration

D2

dt2
γ(t) = 0,

for all t in the domain of γ(t), where D2

dt2 γ(t) = D
dt γ̇ [5, Section 5.4] .

On the generalized Stiefel manifold, the function ξX 7−→ D
dtξX from the set of all (smooth) vector fields

on StB(p, d) to itself is D
dt (·) := ΠX(t)

( d
dt (·)

)
. For every ξx ∈ TxM, there exists an interval I about 0 and

a unique geodesic γ(t;x, ξ) : I → M such that γ(0) = x and γ̇(0) =. Moreover, we have the homogeneity
property γ(t;x, a) = γ(at;x, ). The mapping

Expx : TxM→M : 7→ Expx = γ(1;x, ),

is called the exponential map at x [5, Section 5.4].
To find the exponential map on the Stiefel manifold StB(p, d), we need to find the geodesic given X =

γ(0) ∈ StB(p, d) and ξX = γ̇(0) ∈ TXStB(p, d), i.e., we need to solve the differential equation

D2

dt2
γ(t) = 0

Πγ(t)

(
d
dt

[
d
dt

(γ(t))

])
= 0 (3.23)

Πγ(t) (γ̈(t)) = 0

γ̈(t) = M−1Bγ(t)Sγ̈(t) .

where the matrix Sγ̈(t) satisfies the following Sylvester equation

γ(t)TBγ̈(t) +
(
γ(t)TBγ̈(t)

)T
=
(
γ(t)TBM−1Bγ(t)

)
Sγ̈(t) + Sγ̈(t)

(
γ(t)TBM−1Bγ(t)

)
.

Note that we can replace γ(t)TBγ̈(t) +
(
γ(t)TBγ̈(t)

)T by −2γ̇(t)TBγ̇(t) since γ(t)TBγ(t) = Ip when γ(t) ∈
StB(p, d) and by differentiating two times with respect to t we get the equality.

Thus, in order to compute the exponential map, we simply need to solve (3.23). Unfortunately, in the
general case we are unaware of any analytical solution, and so the equation needs to be solved numerically.
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However, in the special case where MX = B for all X ∈ StB(p, d) such that StB(p, d) is isometric to St(p, d)
via the change of variables X̂ = B1/2X, the equation can be solved analytically in a manner similar to [5,
Equation 5.26]. For MX = B , the equation for the geodesic is reduced to

γ̈(t) = −γ(t)
(
γ̇(t)TBγ̇(t)

)
.

We perform a small modification of the calculations given in [4, Subsection 2.2.2] (also developed by Ross
Lippert). Denote

C := γ(t)TBγ(t), A := γ(t)TBγ̇(t), S := γ̇(t)TBγ̇(t).

By differentiating C,A, S we get the following equations:

Ċ = A+AT ,

Ȧ = S + γ(t)TBγ̈(t) = S − CS ,

Ṡ = γ̈(t)TBγ̇(t) + γ̇(t)TBγ̈(t) = −
[
SA+ATS

]
.

Recall that since γ(t) ∈ StB(p, d) we get that C = Ip. Thus, Ċ = 0p so A = −AT , i.e., A is skew-symmetric.
Moreover, Ȧ = 0p so that A(t) = A(0). In addition, the last equation can be rewritten as

Ṡ = AS − SA ,

and it has a closed form (see [45, Theorem 9.2] for a constant matrix A) solution of the form

S(t) = eAtS(0)e−At .

Finally, we can use the following equation

d
dt
[
γ(t)eAt, γ̇(t)eAt

]
=
[
γ(t)eAt, γ̇(t)eAt

]( A −S(0)
Ip A

)
,

to find a closed form for the geodesic curve

γ(t) = [X, ξ] exp

(
t

(
A −S(0)
Ip A

))[
Ip
0p

]
e−At . (3.24)

Substituting t = 1 into (3.24) gives us the exponential mapping ExpXξX .

3.3 Computational Costs
Table 1 summarizes the computational costs, measured in terms of arithmetic operations, of computing the
Riemannian components on the generalized Stiefel manifold described in Subsections 3.1 and 3.2. Note that
all the costs are for operations in ambient coordinates. In the table, we denote by TC the cost of computing
the product of C with a vector (potentially, after preprocessing C), for some matrix C. Specifically, we use
TB , TB−1/2 , TB1/2 , , TM and TM−1 . In particular, TM and TM−1 denote the maximal cost (over X ∈ StB(p, d))
of taking the product of MX and M−1

X (respectively) with a vector. Also, we denote by T∇f̄ and by T∇2f̄

the cost of computing the Euclidean gradient and the cost of applying the Euclidean Hessian to a tangent
vector.

Note that compared to the standard metric on StB(p, d) (i.e., MX = B for all X), we replace products
with B−1 by products with M−1

X , and B is accessed only through matrix-vector products.
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Table 1: Summary of the cost of the Riemnnian components on the generalized Stiefel manifold
Operation Cost

Retraction maps (Eqs. (3.3), (3.6), (3.9)) O
(
TBp+ dp2

)
Inverse of the polar-based retraction (Eq. (3.4)) O

(
TBp+ dp2

)
Inverse of the QR-based retraction (Eq. (3.7)) O

(
TBp+ dp2 + p4

)
Vector Transport, associated with retractions (Eqs. (A.8),

(A.10), [13, Eq. (16)])

O
(
TBp+ dp2

)
Inner product on the tangent space (Eq. (3.10)) O (TMp+ dp)

Orthogonal projections on the tangent/normal space, MX metric

(Eqs. (3.13),(3.12))

O
(
TBp+ TM−1p+ dp2

)
Orthogonal projections on the tangent/normal space, B metric

(Eqs. (3.18),(3.17))

O
(
TBp+ dp2

)
Vector Transport, based on the orthogonal projection

(Eq. (3.19))

O
(
TBp+ TM−1p+ dp2

)
Riemannian gradient computation (Eq. (3.20)) O

(
TBp+ TM−1p+ dp2 + T∇f̄

)
Applying the Riemannian Hessian to a tangent vector

(Eq. (3.22))

O
(
TBp+ TM−1p+ TMp+ dp2 + T∇f̄ + T∇2f̄

)

3.4 Product Manifold of Generalized Stiefel Manifolds
In some cases it is desirable to solve optimization problems with several sets of variables, in which each
set of variables is constrained to a different generalized Stiefel manifold. For example, the CCA problem is
formulated as an optimization problem with two generalized orthogonality constraints. Such cases are easily
addressed by using the notion of product manifold [5, Section 3.1.6]. Here, we briefly summarize how it
applies to our settings.

The basic idea of the product manifold of generalized Stiefel manifolds is to simply consider the Carte-
sian product of separately computed Riemannian components on each of the manifolds in the product. In
particular, when the number of columns is equal for all the generalized Stiefel manifolds in the product, then
it is possible to simply stack the component matrices on top of each other, and performing the operations
separably on each manifold.

Specifically, Let B1, . . . , Bk be SPD matrices, where the dimension of Bi is di × di, and denote d = d1 +
· · ·+dk. Suppose that the goal is to minimize f(X1, . . . , Xk) = f(X) with the constraint Xi ∈ StBi(p, di) for
i = 1, . . . , k. The problem can be solved using Riemannian optimization on the product manifold StB1

(p, d1)×
StB2(p, d2) × · · · × StBk(p, dk), i.e., X ∈ StB1(p, d1) × StB2(p, d2) × · · · × StBk(p, dk). Indeed, for the
product manifold, there is a natural way to define the differentiable structure so that manifold topology
of StB1

(p, d1) × StB2
(p, d2) × · · · × StBk(p, dk) is the product topology. However, to employ Riemannian

optimization it is also necessary to define a metric on the product manifold.
Suppose that on each StBk(p, dk) the metric is defined by a smooth mapping Xi 7→M

(i)
Xi

such that M (i)
Xi

is an SPD matrix (i.e., the metric g(i) on StBi(p, di) is defined in ambient coordinates by g
(i)
X (ηX , ξX) =

Tr
(
ηTXM

(i)
Xi
ξX

)
). The product manifold StB1(p, d1)× StB2(p, d2)× · · · × StBk(p, dk) is a Riemannian sub-

manifold of Rd1×p × Rd2×p × · · · × Rdk×p endowed with the product metric (sum of the metric values on
each product component). Since Rd1×p × Rd2×p × · · · × Rdk×p is naturally isomorphic to Rd×p by stack-
ing the matrices on top of each other, then StB1

(p, d1) × StB2
(p, d2) × · · · × StBk(p, dk) can be viewed

as a Riemannian embedded submanifold of Rd×p endowed with the metric defined by the d × d matrix
MX := blkdiag

(
M

(1)
X1
,M

(2)
X2
, ...,M

(k)
Xk

)
, and the mapping X 7→MX is smooth.

The various notions introduced previously now extend to the product manifold in a straightforward way.
Indeed, the tangent space of StB1

(p, d1)×StB2
(p, d2)× · · ·×StBk(p, dk) is the Cartesian product of tangent
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spaces of each of the generalized Stiefel manifolds. The retraction and vector transport, and orthogonal
projection on the tangent space is stacking the operations performed separably on each manifold on top of each
other. The Riemannian gradient is computed using the orthogonal projection to the tangent space after pre-
multiplying byM−1

X , i.e., gradf(X) = ΠX

(
M−1
X ∇f̄(X)

)
forX ∈ StB1(p, d1)×StB2(p, d2)×· · ·×StBk(p, dk),

where ΠX (·) is stacking the orthogonal projections on the tangent space of each of the manifolds on top of
each other. The normal space is the product of the normal spaces of each of the manifolds. Similarly to
Subsection 3.2, for the next components we assume MX is constant. The Weingarten map is again obtained
by stacking the Weingarten maps of each of the manifolds

WX (ξX , UX) =

 WX1 (ξX1 , UX1)
...

WXk (ξXk , UXk)


where WXi (ξXi , UXi) is the Weingarten map on StBi(p, di). The Riemannian connection on the product
manifold is the classical directional derivative on Rd×p projected on the tangent space. Thus, the Riemannian
Hessian can be computed using the same formula for the Riemannian Hessian on the generalized Stiefel
manifold, (3.21), following similar reasoning as in Appendix A.2.

In the above, we assume the number of columns in each Stiefel component is the same in all the manifolds
in the product. One can also work on the product manifold StB1

(p1, d1)× StB2
(p2, d2)× · · · × StBk(pk, dk)

where the p1, . . . , pk are not necessarily equal. In this case, we cannot simply stack the tangent vectors etc.,
but can still work with Cartesian product of the different components, and operators like MX and B that
operate on each component separately. Logically, this is the same as we do above for p1 = · · · = pk, although
the description is somewhat more complex, so we omit the details.

3.5 Metric Selection and Riemannian Hessian Conditioning
In this subsection we discuss the effects of metric selection with relation to the condition number of the
Riemannian Hessian at the optimum. Similarly to the unconstrained case, the condition number of the Rie-
mannian Hessian affects the asymptotic convergence of the various optimization algorithms – see [5, Theorem
4.5.6, Theorem 7.4.11 and Eq. (7.50)]. We remark that there are also (worst-case) global convergence results
which guarantee sublinear convergence to first and second order (approximate) critical points (e.g., [46]).
However, these guarantees require additional assumptions, e.g., Lipschitz gradient for first-order conditions
and Lipschitz Hessian with second-order retraction for second-order conditions. Moreover, these guarantees
do not depend on the condition number of the Riemannian Hessian. In practice, as the iterations progress
linear convergence is observed (see experiments in Subsection 4.2) as guaranteed by [5, Theorem 4.5.6], and
for smaller condition number the convergence is faster.

For simplicity of analysis, consider the case p = 1, i.e., the generalized Stiefel manifold in this case is an
ellipsoid SB . We also assume that for all x ∈ SB we haveMx = M for some fixed SPD matrixM . In order to
analyze the condition number of the Riemannian Hessian at the optimum recall that the Riemannian Hessian
is self-adjoint with respect to the Riemannian metric (see [5, Propositin 5.5.3]). Thus, its condition number
at the optimum, x?, can be found using the ratio between the maximal and minimal value of the Rayleigh
quotient

q(ξx?) :=
gx?(ξx? ,Hessf(x?)[ξx? ])

gx?(ξx? , ξx?)
.

Using (3.22), the Riemannian Hessian for p = 1 is reduced to

Hessf(x?)[ηx? ] = Πx?

(
M−1
x?

[
∇2f̄(x?)−

(
(x?)

T∇f̄(x?)− gx?(x?,gradf(x?))
)
B
]
ηx?
)
.
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Recall that gradf(x?) = 0, also the projection on the tangent space is self-adjoint with respect to the
Riemannian metric,. (3.16), and for any ξx? ∈ Tx?SB we have Πx? (ξx?) = ξx? , we get:

q(ξx?) =
ξTx?Mx?Πx?

(
M−1
x?

[
∇2f̄(x?)−

(
(x?)

T∇f̄(x?)
)
B
]
ξx?
)

ξTx?Mx?ξx?

=
(Πx? (ξx?))

T
[
∇2f̄(x?)−

(
(x?)

T∇f̄(x?)
)
B
]
ξx?

ξTx?Mx?ξx?

=
ξTx?
[
∇2f̄(x?)−

(
(x?)

T∇f̄(x?)
)
B
]
ξx?

ξTx?Mx?ξx?
.

This is the Rayleigh quotient of the matrix pencil(
∇2f̄(x?)−

(
(x?)

T∇f̄(x?)
)
B,Mx?

)
on Tx?SB . So, if we want to bound the condition number of the Riemannian Hessian at the optimum we
need to look at the pencil(

Πx?

(
∇2f̄(x?)−

(
(x?)

T∇f̄(x?)
)
B
)

Πx? ,Πx?Mx?Πx?

)
. (3.25)

Therefore, choosing a preconditioning scheme x 7→Mx such that Mx is SPD for any x ∈ SB and

Mx? ≈ ∇2f̄(x?)−
(

(x?)
T∇f̄(x?)

)
B (3.26)

will precondition the Riemannian Hessian at the optimum. One such example can be found in [32]. In
addition, the preconditioners proposed in [8], which are inspired by the Lagrangian, can be viewed in such
manner, thus, approximating the Riemannian Newton method. For the generalized Stiefel manifold with
p > 1 such a choice is less obvious, and we leave it for future work.

Recall that the standard choice for metric selection on the generalized Stiefel manifold with p = 1 is
Mx = B for all x ∈ SB . If ∇2f̄(x?) is well conditioned, it is often the case that the pencil (3.25) is well
conditioned under certain assumptions. We demonstrate this in Section 4 for the problem of finding the
leading correlation in CCA. In such cases, if we use a preconditioning scheme x 7→ Mx such that Mx? ≈ B,
the condition number grows by at most κ(B,Mx?), so if that quantity is small (i.e., Mx? well approximates
B) we can expect fast convergence.

4 Theoretical and Numerical Illustrations

4.1 Simple Theoretical Examples
Our proposed preconditioning strategy for orthogonality constrained problems is based on using a precon-
ditioning scheme to define the Riemannian metric. In this section we illustrate this point using a couple of
simple examples. All examples correspond to the case p = 1, i.e., the ellipsoid.

Example 4.1. Linear Objective. Consider the following problem

max
x∈Rd

bTx s.t. xTBx = 1

for some vector 0 6= b ∈ Rd, where B ∈ Rd×d. It is easy to show that the solution is x? = B−1b/‖B−1b‖B .
It is well known that solving a linear system is equivalent to an unconstrained minimization of a quadratic
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objective. Here we can see that solving a linear system is also equivalent to maximizing a linear objective
subject to a quadratic constraint. Note that this problem is constrained on the ellipsoid manifold SB . Let
the inner product on each tangent space (the Riemannian metric) be endowed from the ambient space Rd.
Using SB with a metric selection gx(, ηx) = Mxηx (in ambient coordinates), where x 7→ Mx ∈ Rd×d is a
smooth mapping that maps x ∈ SB to an SPD matrix Mx, the Riemannian gradient is

gradf(x) = (In − (xTBM−1
x Bx)−1M−1

x BxxTB)M−1
x b

since the Euclidean gradient is simply b, independent of x. Thus, using Riemannian gradient ascent on SB
with the polar based retraction, (3.3), we get the iteration

yk+1 = xk + αk

(
M−1
xk
b−

xT
k BM

−1
xk
b

xT
k BM

−1
xk Bxk

M−1
xk
Bxk

)
xk+1 =

yk+1

‖yk+1‖B
.

We see, as expected, that the iterations depend on the choice of the Riemannian metric defined by the matrix
Mx. If we impose the metric Mx = B for all x ∈ SB , and take step size α0 = 1/xT

k b, then the iterations
reduce to x1 = B−1b/‖B−1b‖B , and the problem is solved in a single iteration.

As expected, with Mx = B for all x, the Riemannian Hessian at x? is well conditioned. Indeed, we have

Hessf(x?) = −Πx?
((
x?Tb

)
Id
)
,

and its corresponding Rayleigh quotient is

q(ξx?) =
ξTx?B

[
−Πx?

((
x?Tb

)
Id
)]
ξx?

ξTx?Bξx?
= −

(
x?Tb

)
= −‖B−1b‖B ,

which is constant so the condition number equals 1. Note that the metric selection Mx = B also satisfies
(3.26).

Example 4.2. Inverse Power Iteration. Consider the following problem

max
x∈Rd

1

2
xTx s.t. xTBx = 1

where B ∈ Rd×d is an SPD matrix. The solution is an eigenvector corresponding the smallest eigenvalue of
B, λd(B), (which is also the eigenvector corresponding to the maximal eigenvalue of B−1), since this problem
is equivalent to maximizing the Rayleigh quotient xTx/xTBx. Note that this problem is constrained on
the ellipsoid manifold SB . Using SB with metric selection gx(, ηx) = Mxηx (in ambient coordinates), where
Mx ∈ Rd×d is an SPD matrix for any x ∈ SB , the Riemannian gradient is

gradf(x) = (Id − (xTBM−1
x Bx)−1M−1

x BxxTB)M−1
x x

since the Euclidean gradient is x. Thus, using Riemannian gradient ascent on SB with the polar based
retraction, (3.3), we get the iteration

yk+1 = xk + αk

(
M−1
x xk −

xT
k BM

−1
x xk

xT
k BM

−1
x Bxk

M−1
x Bxk

)
xk+1 =

yk+1

‖yk+1‖B
.

If we impose the metricMx = B for all x ∈ SB , and take step sizes αk = (xT
k xk)−1, then the iterations reduce

to xk+1 = B−1xk/‖B−1xk‖2, i.e., the inverse power method, which is well known for its good convergence
properties for eigenvalues near zero.
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Let us examine the Riemannian Hessian at the optimal point x? (i.e (x?)
T
x? = 1/λmin(B) = 1/λd(B)):

Hessf(x?) = Πx?

(
B−1

[
Id −

(
(x?)

T
x?
)
B
])

= Πx?
(
B−1 [Id − (1/λd(B))B]

)
.

The corresponding Rayleigh quotient is reduced to the following form using similar reasoning as in Subsection
3.5:

q(ξx?) =
ξTx?B

[
Πx?

(
B−1 [Id − (1/λd(B)))B]

)]
ξx?

ξTx?Bξx?
=
ξTx? [Id − (1/λd(B))B] ξx?

ξTx?Bξx?
.

Thus, the eigenvalues of the Riemannian Hessian at x? correspond to the generalized eigenvalues of the
matrix pencil (Id − (1/λd(B))B,B) on Tx?SB , i.e., the eigenvalues of B−1 deflated by −1/λd(B) on Tx?SB .
Moreover, since ξx? ∈ Tx?SB , we have ξTx?Bx? = 0, thus ξx? is constrained not to correspond to 1/λd(B).
Assume that λd−1(B) > λd(B), then the condition number is bounded by

1/λd(B)− 1/λ1(B)

1/λd(B)− 1/λd−1(B)
,

which for λd(B) that is close to 0, and λd−1(B)� 0 is close to 1.
Note that if we try to impose the metric Mx = −(Id − (1/λd(B))B) for all x ∈ SB (following (3.26)), we

have that Mx is singular since it has a zero eigenvalue (corresponding to the eigenvector x?), thus it cannot
be a Riemannian metric inherited from the ambient space Rd.

4.2 Canonical Correlation Analysis: Theory and Experiment
In this subsection we illustrate our approach on the problem of finding the top correlation between two
datasets. This problem can be written as optimization problem whose constraint set is the product of two
ellipsoids.

CCA, originally introduced by [1], is a well-established method in statistical learning with numerous
applications (e.g., [47, 48, 49, 50, 51, 52]). In CCA the relation between a pair of datasets in matrix form is
analyzed, where the goal is to find the directions of maximal correlation between a pair of observed variables.
In the language of linear algebra, CCA measures the similarities between two subspaces spanned by the
columns of of the two matrices. Here, we consider a regularized version of CCA defined below:

Definition 4.3. Let X ∈ Rn×dx and Y ∈ Rn×dy be two data matrices, and λx, λy ≥ 0 be two regularization
parameter. Let

q = max
(
rank

(
XTX + λxIdx

)
, rank

(
Y TY + λyIdy

))
.

The (λx, λy) canonical correlations σ1 ≥ · · · ≥ σq and the (λx, λy) canonical weights u1, . . . , uq ∈ Rdx ,
v1, . . . , vq ∈ Rdy , are the ones that maximize

Tr
(
UTXTY V

)
subject to

UT(XTX + λxIdx)U = Idx , V T(Y TY + λyIdy )V = Idy

where UTXTY V = diag (σ1, . . . , σq), U =
[
u1 . . . uq

]
∈ Rdx×q and V =

[
v1 . . . vq

]
∈ Rdy×q.

In this paper, we focus on finding the top correlation, i.e., finding σ1, u1 and v1. It is useful to introduce
the following notations:

Σxx = XTX + λxIdx ,Σyy = Y TY + λyIdy ,Σxy = XTY .

Restricting to finding the top correlation, the optimization problem becomes:

maxuTΣxyv s.t. u ∈ SΣxx , v ∈ SΣyy (4.1)
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It is well known ([3]) that the optimal solution of Problem (4.1) is (up to the sign of the vectors)

u1 := Σ−
1/2

xx φ v1 := Σ−
1/2

yy ψ (4.2)

where φ ∈ Rdx and ψ ∈ Rdy are the left and right unit-length singular vector corresponding to the largest
singular value σ1 of the matrix

R := Σ−
1/2

xx ΣxyΣ−
1/2

yy . (4.3)

In order to conveniently use the Riemannian optimization framework, we also denote d = dx + dy, and
z = [uT, vT]T ∈ Rd where u ∈ Rdx and v ∈ Rdy . Then the constraint set is a product manifold of two
ellipsoids z ∈ Sxy := SΣxx × SΣyy . The objective function to be minimized is then

f(z) = −1

2
zT
[

0 Σxy
ΣT
xy 0

]
z . (4.4)

We endow the manifold SΣxx and SΣyy with a metric defined by two preconditioning schemes u 7→ M
(xx)
u

and v 7→ M
(yy)
v . The metric on the product manifold Sxy is defined by z 7→ Mz = blkdiag

(
M

(xx)
u ,M

(yy)
v

)
as explained in Section 3.4. Using the formulas in Section 3.2 we find that the Riemannian gradient and the
Riemannian Hessian (at the critical points or if Mz := M = blkdiag

(
M (xx),M (yy)

)
) are given by:

gradf(z) = Πz

(
M−1
z ∇f̄(z)

)
= −

 Πu

((
M

(xx)
u

)−1

Σxyv

)
Πv

((
M

(yy)
v

)−1

ΣT
xyu

)
 ,

Hessf(z)[ηz] = Πz

M−1
z

 (uTM (xx)Π⊥u

((
M (xx)

)−1
Σxyv

)
) · Σxx −Σxy

−ΣT
xy

(
vTM (yy)Π⊥v

((
M (yy)

)−1
ΣT
xyu
))
· Σyy

 ηz
 .

Along with formulas for the retraction and vector transport (see Subsection 3.1), various Riemannian opti-
mization algorithms can be applied to solve Problem (4.1).

As expected, at the optimal solution z? = [uT
1 , v

T
1 ]T (see (4.2)) the Riemannian gradient vanishes:

gradf(z?) = 0. Moreover, the Riemannian Hessian at the optimum becomes

Hessf(z?) = Πz?

(
M−1
z?

[
σ1 · Σxx −Σxy
−ΣT

xy σ1 · Σyy

])
. (4.5)

Next, we demonstrate the effect of preconditioning on the condition number of the Riemannian Hessian at
z?. We show that if the leading correlation is strictly larger than the second largest one, and we select a smooth
preconditioning scheme z 7→ Mz such that Mz? = Σ := blkdiag (Σxx,Σyy), the condition number of the
Riemannian Hessian at the optimum is equal to (σ1+σ2)/(σ1−σ2). Thus, if the leading correlation gap σ1−σ2

is O(σ1) then the condition number at the optimum is O(1), and we can expect fast convergence (dependence
on the gap between the correlations is expected). Furthermore, if we select a smooth preconditioning scheme
z 7→Mz such that Mz? ≈ Σ (see for example Fig. 1) the condition number bound grows by at most a small
factor: κ (B,Mz?).

Lemma 4.4. Assuming σ1 − σ2 > 0 and that Σ is an SPD matrix, if Sxy is equipped with a metric defined
by a smooth preconditioning scheme z 7→Mz such that Mz? = Σ, then the condition number of Riemannian
Hessian on Sxy of (4.4) at z? is equal to σ1+σ2

σ1−σ2
. Additionally, if Mz? ≈ Σ then the condition number is

bounded by σ1+σ2

σ1−σ2
· κ (B,Mz?).
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Proof. In order to bound the condition number of Riemannian Hessian on Sxy of (4.4) at z? we use the
Courant-Fischer Theorem for the compact self-adjoint linear operator Hessf(z?)[·] : Tz?Sxy → Tz?Sxy over
the finite dimensional vector space TZSxy:

λk(Hessf(z?)) = min
U,dim(U)=k−1

max
0 6=ξz?∈U⊥

q(ξz?),

λk(Hessf(z?)) = max
U,dim(U)=k

min
06=ξz?∈U

q(ξz?),

where
q(ξz?) :=

gz?(ξz? ,Hessf(z?)[ξz? ])

gz?(ξz? , ξz?)
,

is the Rayleigh quotient. In the above, λk(Hessf(z?)) is the k-th largest eigenvalue (i.e., eigenvalues are
ordered in a descending order) of Hessf(z?), and U is a linear subspace of Tz?Sxy. In particular, the maximal
and minimal eigenvalues are given by the formulas

λmax(Hessf(z?)) = max
06=ξz?∈Tz?Sxy

q(ξz?),

λmin(Hessf(z?)) = min
06=ξz?∈Tz?Sxy

q(ξz?),

and the condition number of the Riemannian Hessian at z? is the ratio of these two eigenvalues.

κ(Hessf(z?)) =
λmax(Hessf(z?))

λmin(Hessf(z?))
.

We begin by simplifying the quotient q(ξz?). At the optimum, z?, we have f(z?) = −uT
1 Σxyv1 =

−vT1 ΣT
xyu1 = −σ1. The formula for the Riemannian Hessian, Hessf(z?), is given by (4.5). Using the

following notation for the Euclidean Hessian of

∇2f̄(z?) :=

[
0 −Σxy
−ΣT

xy 0

]
, (4.6)

and Σ we can compactly write (4.5):

Hessf(z?) = Πz?
(
M−1
z?
(
∇2f̄(z?) + σ1Σ

))
.

Next, as in Subsection 3.5, recall that Πz? is self-adjoint with respect to the Riemannian metric, (3.16), and
that for any ξz? ∈ Tz?Sxy we have Πz? (ξz?) = ξz? , we get:

q(ξz?) =
ξTz?
(
∇2f̄(z?) + σ1 · Σ

)
ξz?

ξTz?Mz?ξz?
=
ξTz?
(
∇2f̄(z?) + σ1 · Σ

)
ξz?

ξTz?Σξz?
· ξTz?Σξz?

ξTz?Mz?ξz?
,

where we use the fact that Σ is not singular. Note that the quotient

ξTz?
(
∇2f̄(z?) + σ1 · Σ

)
ξz?

ξTz?Σξz?
,

corresponds to the Rayleigh quotient of the Riemannian Hessian at z? if Mz? = Σ.
Let us first find the eigenvalues of the Riemannian Hessian for the case Mz? = Σ. We perform the

following invertible change of variables ξ̃z? := Σ1/2ξz? , to find that

q(ξz?) =
ξ̃Tz?
(
Σ−1/2∇2f̄(z?)Σ−1/2 + σ1 · Id

)
ξ̃z?

ξ̃Tz? ξ̃z?
:= q̃(ξ̃z?) .
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Denote the space of vectors ξ̃z? such that Σ−1/2ξ̃z? ∈ Tz?Sxy by Σ1/2Tz?Sxy, and the orthogonal space
to it by (Σ1/2Tz?Sxy)⊥. The above expression, q̃(ξ̃z?), is the Rayleigh quotient for the symmetric matrix
Σ−1/2∇2f̄(z?)Σ−1/2 +σ1 · Id. Thus, applying the Courant-Fischer theorem for q̃(ξ̃z?), where ξ̃z? ∈ Σ1/2Tz?Sxy,
the minimal and the maximal values of R(ξz?), where ξz? ∈ Tz?Sxy, are the minimal and the maximal
eigenvalues of the matrix Σ−1/2∇2f̄(z?)Σ−1/2 + σ1 · Id in the space Σ1/2Tz?Sxy.

To find the eigenvalues of the matrix Σ−1/2∇2f̄(z?)Σ−1/2 + σ1 · Id in the space Σ1/2Tz?Sxy, we first note
that all the eigenvalues of Σ−1/2∇2f̄(z?)Σ−1/2 are −σ1 < −σ2 ≤ ... ≤ −σq ≤ 0 ≤ ... ≤ 0 ≤ σq ≤ ... ≤ σ2 < σ1

(see [53]). So, all the eigenvalue of Σ−1/2∇2f̄(z?)Σ−1/2 + σ1 · Id are 0 < σ1 − σ2 ≤ · · · ≤ σ1 − σq ≤ σ1 ≤ ... ≤
σq + σ1 ≤ ... ≤ σ2 + σ1 < 2σ1. Next, note that the eigenspaces of Σ−1/2∇2f̄(z?)Σ−1/2 + σ1 · Id corresponding
to the eigenvalues 0 and 2σ1 is exactly the two dimensional space (Σ

1
2Tz?Sxy)⊥. Indeed, according to (3.11)

and Subsection 3.4:
(Σ

1/2Tz?Sxy)⊥ = span

{
Σ

1/2

[
u1

v1

]
,Σ

1/2

[
u1

−v1

]}
,

where using (4.2)

Σ
1/2

[
u1

v1

]
=

[
φ
ψ

]
and Σ

1/2

[
u1

−v1

]
=

[
φ
−ψ

]
.

Recall that the normal space (Tz?Sxy)⊥ is the Cartesian product of the normal spaces (Tu1
SΣxx)⊥ and

(Tv1SΣyy )⊥ which are spanned by u1 and v1 correspondingly when Mz? = Σ. Thus, the Cartesian product
(Tz?Sxy)⊥ can be spanned by [uT

1 , v
T
1 ]T and [uT

1 ,−vT1 ]T.
Then, using (4.3) and (4.6) we have

(Σ−
1/2∇2f̄(z?)Σ−

1/2 + σ1 · Id)Σ
1/2

[
u1

v1

]
=

([
−R

−RT

]
+ σ1Id

)[
φ
ψ

]
= 0 ,

where the last equality follows from the fact that
[

R
RT

]
is the augmented matrix associated with R,

so
[
φ
ψ

]
, which has the dominant left and right singular vectors stacked, is the eigenvalue corresponding

to the largest eigenvalue σ1 of the augmented matrix. Similarly, since the vector
[

φ
−ψ

]
is the eigenvector

corresponding to the smallest eigenvalue −σ1 of the augmented matrix, then

(Σ−
1/2∇2f̄(z?)Σ−

1/2 + σ1 · Id)Σ
1/2

[
u1

−v1

]
=

([
−R

−RT

]
+ σ1Id

)[
φ
−ψ

]
= 2σ1

[
φ
−ψ

]
.

Finally, the minimal and the maximal eigenvalues of the matrix Σ−1/2∇2f̄(z?)Σ−1/2 + σ1 · Id in the space
of vectors ξ such that Σ−1/2ξ ∈ Tz?Sxy are σ1 − σ2 and σ1 + σ2 correspondingly. Thus,

λmax(Hessf(z?)) = max
06=ξz?∈Tz?Sxy

q(ξz?) = σ1 + σ2 > 0 ,

and,
λmin(Hessf(z?)) = min

06=ξz?∈Tz?Sxy
q(ξz?) = σ1 − σ2 > 0 ,

The condition number for the case Mz? = Σ is obtained by dividing the last two quantities.
If Mz? ≈ Σ, we can bound the smallest and largest eigenvalues of the Riemannian Hessian at z? by

λmin(Hessf(z?)) ≥ min
06=ηz?∈Tz?Sxy

ηTz?
(
∇2f̄(z?) + σ1 · Σ

)
ηz?

ηTz?Σηz?
· min
ηz? 6=0

ηTz?Σηz?

ηTz?Mz?ηz?

= λmin(Σ,Mz?) · (σ1 − σ2) ,
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and

λmax(Hessf(z?)) ≤ max
06=ηz?∈Tz?Sxy

ηTz?
(
∇2f̄(z?) + σ1 · Σ

)
ηz?

ηTz?Σηz?
· max
ηz? 6=0

ηTz?Σηz?

ηTz?Mz?ηz?

= λmax(Σ,Mz?) · (σ1 + σ2) .

Finally, we get

κ(Hessf(z?)) =
λmax(Hessf(z?))

λmin(Hessf(z?))
≤ σ1 + σ2

σ1 − σ2
· κ (B,Mz?) .

We now illustrate the effect of the preconditioning scheme z 7→ Mz numerically. In our experiments, we
use six metric choices with constant matrices, i.e., Mz := M independent of z ∈ Sxy: the trivial choice of a
unit matrix M = Id, the standard but expensive choice M = Σ which achieves the optimal bound according
to Lemma 4.4, and four approximations of Σ via the (exact) sketched preconditioning strategy described by
Gonen et al. [54], which we term as Dominant Subspace Preconditioning.

Dominant Subspace Preconditioning was originally designed for ridge regression to speed up Stochastic
Variance Reduced Gradient via an approximation of the empirical correlation matrix. In our experiments we
use this preconditioning strategy to approximate Σxx and Σyy. The approximation is done as follows: suppose
A = X̂X̂T ∈ Rd×d be some positive semi-definite matrix, and let X̂ = UΛ1/2V T be an SVD decomposition of
X̂ such that A = UΛUT is an eigendecomposition, with the diagonal entries in Λ sorted in descending order.
Given k, let us denote by Uk the first k columns of U , Λk denote the leading k×k minor of Λ, and λk the k-th
largest eigenvalue of A. The k-dominant subspace preconditioner of A+λId is Uk(Λk−λkI)UT

k + (λk +λ)Id.
The dominant subspace can be found using a sparse SVD solver (we use MATLAB’s svds). Moreover, its
inverse can be easily computed using the formula

Uk(Λk + λI)−1UT
k +

1

λk + λ
(Id − UkUT

k ).

The experiments are performed with the MEDIANILL1 dataset where the dimensions are n = 43907,
dx = 120, and dy = 101. The implementation uses Manopt which is a MATLAB library that implements
some Riemannian optimization algorithms [7]. In Fig. 1 the left graph presents suboptimality vs. iteration
count for Riemannian CG, and the right graph presents suboptimality vs. products with the data matrices
for Riemannian trust-region. Note that in Riemannian trust-region, different iterations do a variable amount
of passes over the data, thus, this is the dominant cost of the trust-region method. The graphs in Fig. 1
demonstrate that the choice M = Σ leads to the lowest iteration count. This observation is also supported
by the condition number of the Riemannian Hessian at the optimum. We evaluated it using Manopt, and
indeed, the lowest condition number, 4.03, is achieved when M = Σ, and the highest, 60.2, for M = Id.

5 Conclusions
In this paper, we developed the preconditioned geometric components for optimization on the generalized
Stiefel manifold. The main mechanism for introducing a preconditioner is via the Riemannian metric. The
technique can be used to precondition any underlying Riemannian optimization method. Our method can
also be applied to constraints which are described by the product of two or more generalized Stiefel manifolds.
We demonstrated our method both theoretically and numerically on the problem of computing the dominant
canonical correlation. As part of developing the related geometrical components of the generalized Stiefel

1Datasets were downloaded for libsvm’s website: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Results for CCA with Riemannian conjugate-gradient (left - suboptimality vs. #iterations) and
Riemannian trust-region (right - suboptimality vs. products with the data matrices) with various choices of
metrics for p = 1. The number of leading eigenvalues used to form the Dominant Subspace Preconditioner is
denoted by k.

manifold equipped with a non standard Riemannian metric, we evaluate the costs of computing these compo-
nents and relate the preconditioner to asymptotic convergence via the condition number of the Riemannian
Hessian at the optimum.

In a sense, this paper presents only part of the picture. While it presents a methodology for building
preconditioned algorithms for optimization with generalized orthogonality constraints, it does not explains
how to build effective preconditioners to be used in conjunction with those algorithms, and we leave it for
future work. Additional research directions include addressing other constraints using similar ideas, e.g.,
fixed-rank matrices, products of different types of manifolds, quotient manifolds, etc.
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A Further Details on the Preconditioned Geometric Components
In this section we elaborate on the derivations of the Riemannian components that appear in Section 3.
Our main contribution is the metric dependent components in Subsection A.2. The metric independent
components are included for completeness.

A.1 Metric Independent Notions
We begin with the metric independent notions that appear in Subsection 3.1. Recall that the tangent space
has two common characterizations. The first characterization

TXStB(p, d) =
{
Z ∈ Rd×p : ZTBX +XTBZ = 0p

}
, (A.1)

is based on the Submersion Theorem [5, Proposition 3.3.3]. StB(p, d) is the kernel of the mapping F (X) =
XTBX − Ip, i.e., StB(p, d) = F−1(0p). This mapping is a submersion since the rank of F is p(p+ 1)/2 (i.e.,
F is full rank); indeed, the rank of F is determined by the range of DF (X)[·] : Rd×p → Ssym(p). For every
Ẑ ∈ Ssym(p), the matrix Z = 1

2XẐ ∈ Rd×p satisfies DF (X)[Z] = Ẑ. According to [5, Proposition 3.3.3] then
StB(p, d) is an embedded submanifold of Rd×p, and its dimension is dp− p(p+1)

2 .
The second characterization is:

TXStB(p, d) =
{
Z = XΩ +XB⊥K ∈ Rd×p : Ω ∈ Sskew(p), K ∈ R(d−p)×p

}
, (A.2)

where Ω is a skew-symmetric matrix (i.e., ΩT = −Ω), K is arbitrary, and XB⊥ ∈ Rd×(d−p) satisfies that
its columns are an orthonormal basis for the orthogonal complement of the column space of X with respect
to the matrix B, i.e., XT

B⊥BXB⊥ = Id−p, and XT
B⊥BX = 0(d−p)×p. The dimension of the space defined in

(A.2) is p(p−1)/2 +p(d−p) = dp−p(p+ 1)/2. Both characterizations of TXStB(p, d), (A.1) and (A.2), are
equal. Indeed, every Z ∈ Rd×p can be represented by XΩ+XB⊥K for arbitrary Ω ∈ Rp×p and K ∈ R(d−p)×p

(dp degrees of freedom), where the columns of X and XB⊥ are linearly independent, thus each of the columns
of Z can be any vector in Rd, and Z any matrix in Rd×p. Suppose Z satisfies (A.1), then ΩT = −Ω, so
that Z belongs to the set defined in (A.2). Thus, the set defined in (A.1) is a subset (subspace) of the set
defined in (A.2). Finally, since both the sets defined in (A.1) and (A.2) are subspaces of TXRd×p ' Rd×p,
and both are with the same dimension we get that (A.1) and (A.2) are equal.

In this article, we consider the use of three retractions mappings:

Rpolar
X (ξX) := (X + ξX)(Ip + ξTXBξX)−

1/2 (A.3)

RQR
X (ξX) := qfB (X + ξX) = B−

1/2qf
(
B

1/2 (X + ξX)
)

(A.4)

RCayley
X (ξX) := (Id −

1

2
W (ξX))−1(Id +

1

2
W (ξX))X (A.5)

where
W (ξX) := (Id −

1

2
XXTB)ξXX

TB −XξTX(Id −
1

2
BXXT)B.

The cost of computing the polar-based retraction, (A.3), is O
(
TBp+ dp2

)
where TB is the cost of computing

the product of B with a vector. This is evident from the formulas since none of the operations require forming
B, but instead require taking product of B with matrices, finding the inverse of a square root of a p × p
matrix, multiplying a d × p matrix by a p × p matrix, and multiplying a p × d matrix by a d × p matrix.
This is also mentioned in [15, Section 3.2]. The cost of computing the QR-based retraction, (A.4), is also
O
(
TBp+ dp2

)
. This is shown in [15, Section 3.2]. Though, in [15], it is claimed that for large p (p ≤ d)

the QR-based retraction has an advantage in computational costs compared to the polar-based retraction,
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since the eigenvalue decomposition of (X + ξX)TB(X + ξX) (or SVD decomposition of X + ξX) can be
replaced with a Cholesky decomposition of the same matrix. The cost of computing the Cayley transform
based retraction, (A.5), is O

(
TBp+ dp2

)
which follows using the Sherman-Morrison-Woodbury formula as

described in Subsection 3.1. Another approach suggested in [14] by Li et al. is to use a fixed point method
to approximate the retraction.

The retraction in (A.4) is proven to be indeed a retraction mapping in [15, Theorem 3.1]. For the
retraction in (A.3), though we found the equation in the literature, we could not find a formal argument
that it is a retraction. Therefore, we show this by showing that it meets the conditions in [5, Definition
4.1.1]. The first condition of [5, Definition 4.1.1] is that RX(0X) = X, and it indeed holds since Rpolar

X (0X) =
(X+0X)(Ip+0T

XB0X)−1/2 = X. The second condition of [5, Definition 4.1.1] is that DRx(0x) = idTXStB(p,d),
where idTXStB(p,d) denotes the identity mapping on TXStB(p, d). This condition is equivalent to the condition
that for every vector ξX ∈ TXStB(p, d) we have d

dtRX(tξX)
∣∣
t=0

= ξX . Denote by λ1, ..., λp ≥ 0 the eigenvalues
of ξTXBξX , then

(Ip + t2ξTXBξX)−
1/2 = Q


1√

1+t2λ1

. . .
1√

1+t2λp

QT,

where Q is an orthogonal matrix that diagonalizes ξTXBξX . Then,

d
dt
Rpolar
X (tξX)

∣∣∣∣
t=0

=
d
dt

[
(X + tξX)(Ip + t2ξTXBξX)

1/2
]∣∣∣∣
t=0

=

=
d
dt

(X + tξX)Q


1√

1+t2λ1

. . .
1√

1+t2λp

QT


∣∣∣∣∣∣∣∣
t=0

= ξXQ


1√

1+t2λ1

. . .
1√

1+t2λp

QT − (X + tξX)Q


tλ1

(1+t2λ1)1.5

. . .
tλp

(1+t2λp)1.5

QT

∣∣∣∣∣∣∣∣
t=0

= ξX .

Similarly, the retraction in (A.5) is also proven to be a retraction mapping in [14, Eq. (4)] for the Stiefel
manifold. In order to generalize it to the generalized Stiefel manifold, we show it meets the conditions in [5,
Definition 4.1.1]. For the first condition we have W (0X) = 0d, thus

RCayley
X (0X) = (Id − 0d)

−1(Id + 0d)X = X .

For the second condition, we have

d
dt
RCayley
X (tξX)

∣∣∣∣
t=0

= W (ξX)X = ξX ,

where we used XTBX = Ip and the definition of tangent vectors on StB(p, d), (A.1), i.e., ξTXBX+XTBξX =
0p.

Let us consider the inverse of the polar retraction. Suppose that Y = Rpolar
X (ξX). Using the definition of

the polar retraction, and reordering the equation we find that

ξX = Y (Ip + ξTXBξX)
1/2 −X . (A.6)
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Left multiply by XTB, and recall that XTBX = Ip, to find that

XTBξX = XTBY (Ip + ξTXBξX)
1/2 − Ip .

Now using the fact that XTBξX + ξTBBX = 0p (since ξX is a tangent vector), we find that

XTBY (Ip + ξTXBξX)
1/2 + (Ip + ξTXBξX)

1/2Y TBX − 2Ip = 0p .

Thus Z = (Ip + ξTXBξX)1/2 is SPD solution to (3.5). If we can uniquely recover (Ip + ξTXBξX)1/2 by
solving (3.5) (something we can do in a small neighborhood of X that intersects with the image of the polar
retraction), we can use (A.6) to invert the polar retraction.

The derivation of the inverse of the QR retraction is similar. Suppose that Y = RQR
X (ξX). Using the

definition of the QR-based retraction, and reordering the equation we find that

ξX = Y R−X, (A.7)

where R is an upper-triangular matrix with strictly positive elements on its main diagonal such that

qf
(
B

1/2 (X + ξX)
)
R = B

1/2 (X + ξX) .

To find R, left multiply by XTB, and recall that XTBX = Ip to find that

XTBξX = XTBY R− Ip .

Now using the fact that XTBξX + ξTBBX = 0p (since ξX is a tangent vector), we find that

XTBY R+RTY TBX − 2Ip = 0p .

Thus, R is an upper-triangular matrix with strictly positive elements on its main diagonal solving to (3.8).
If we can uniquely recover R by solving (3.8) (something we can do in a small neighborhood of X that
intersects with the image of the QR-based retraction), we can use (A.7) to invert the QR-based retraction.

We remind here the conditions for a unique solution for (3.8). According to [16, Eq. (14) and Algorithm
1], (3.8) is equivalent to the set of the following p linear equations

M̃ir̃i = bi, i = 1, ..., p,

where M̃i is the i-th principal minor extracted from the matrix XTBY , r̃i is the column-vector formed by
the first i elements of the i-th column of the matrix R, and bi is the column-vector whose first i− 1 elements
are the product

−[mi1, ...mij ]r̃j ,

where j = 1, ..., i− 1, mik are elements of the i-th row of M̃i, and the i-th element of bi equals 1. Thus, this
set of linear equations has a unique solution if and only if all the principal minors of XTBY are non-singular.
In addition, we also demand that the diagonal elements of R are strictly positive. Note that, since for Y close
enough to X the eigenvalues of XTBY are strictly positive, thus det(M̃i) > 0. Moreover, using Cramer’s
rule for rii the denominator is positive and the nominator is also positive for Y close enough to X which
satisfies the second constraint on R.

We also show the derivation of retraction based vector transports using equations (A.3) and (A.4) similarly
to [13]. For (A.3) denote

A(t) := Ip + (ηX + tξX)
T
B (ηX + tξX) ,
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then,

τ (polar)
ηX

:= DRpolar
X (ηX)[ξX ] (A.8)

=
d
dt
Rpolar
X (ηX + tξX)

∣∣∣∣
t=0

=
d
dt

[
(X + ηX + tξX) (A(t))

−1/2
]∣∣∣∣
t=0

= ξX (A(0))
−1/2

+ (X + ηX)
d
dt

(A(t))
−1/2

∣∣∣∣
t=0

= ξX (A(0))
−1/2 − (X + ηX) (A(0))

−1/2 d
dt

(A(t))
1/2

∣∣∣∣
t=0

(A(0))
−1/2

,

where the last equality is due to the differentiation of the following two identities

I = (A(t))
−1/2

(A(t))
1/2
,

A(t) = (A(t))
1/2

(A(t))
1/2
,

which leads to
0 =

d
dt

(A(t))
−1/2

(A(t))
1/2

+ (A(t))
−1/2 d

dt
(A(t))

1/2
,

d
dt

(A(t))
−1/2

= − (A(t))
−1/2 d

dt
(A(t))

1/2
(A(t))

−1/2
,

and
d
dt
A(t) =

d
dt

(A(t))
1/2

(A(t))
1/2

+ (A(t))
1/2 d

dt
(A(t))

1/2
,

ξTXBηX + ηTXBξX + 2tξTXBξX =
d
dt

(A(t))
1/2

(A(t))
1/2

+ (A(t))
1/2 d

dt
(A(t))

1/2
.

Thus, d
dt (A(t))

1/2
∣∣∣
t=0

is a p× p matrix which is the solution of the following Sylvester equation:

d
dt

(A(t))
1/2

∣∣∣∣
t=0

(A(0))
1/2

+ (A(0))
1/2 d

dt
(A(t))

1/2

∣∣∣∣
t=0

= ξTXBηX + ηTXBξX . (A.9)

According to [42, Theorem 2.4.4.1], there is a unique solution to (A.9) for any ξTXBηX + ηTXBξX , since
(A(0))

1/2
=
(
Ip + ηTXBηX

)1/2 is positive definite (ηTXBηX is a symmetric positive semi-definite matrix) and

−
(
Ip + ηTXBηX

)1/2 is negative definite, thus they have no eigenvalues in common. Solving (A.9) costs O(p3)
(e.g., using the Bartels–Stewart algorithm [55]). In addition, to compute this vector transport we need to
find the square root of a p× p matrix and its inverse which also costs O(p3), compute the product of B with
matrices, compute the matrix multiplication of d× p matrices by p× p matrices, of p× d matrices by d× p
matrices and of p × p matrices by p × p matrices. Thus, the total computational cost of using the vector
transport given in (A.8) is O(TBp+ dp2).

For (3.6):

τ (QR)
ηX

:= DRQR
X (ηX)[ξX ] = DqfB(X + ηX)[ξX ] (A.10)

= B−
1/2Dqf

(
B

1/2 (X + ξX)
)

[B
1/2ξX ]

= B−
1/2

[
qf
(
B

1/2 (X + ξX)
)
ρskew

(
qf
(
B

1/2 (X + ξX)
)T

B
1/2ξX

(
qf
(
B

1/2 (X + ξX)
)T

B
1/2 (X + ξX)

)−1
)

+

+

(
In − qf

(
B

1/2 (X + ξX)
)
qf
(
B

1/2 (X + ξX)
)T
)
B

1/2ξX

(
qf
(
B

1/2 (X + ξX)
)T

B
1/2 (X + ξX)

)−1
]
,
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where the last equality is due to [5, Example 8.1.5]:

Dqf(Y )[U ] = qf(Y )ρskew

(
qf(Y )TU

(
qf(Y )TY

)−1
)

+
(
In − qf(Y )qf(Y )T

)
U
(
qf(Y )TY

)−1
,

and ρskew(·) is the skew-symmetric term of the decomposition of a square matrix A into the sum of a skew-
symmetric term and an upper triangular term, i.e,

(ρskew(A))i,j =


Ai,j i > j

0 i = j

−Aj,i i < j

.

Computing (A.10) can be done in the following way. First, computingB−1/2qf
(
B1/2 (X + ξX)

)
costsO

(
TBp+ dp2

)
(see computational cost of (3.6)). Also, computing qf

(
B1/2 (X + ξX)

)T
B1/2 has the same cost since it is

equivalent to computing R−T (X + ξX)
T
B, where R is the R matrix of the thin I-QR decomposition of

B1/2 (X + ξX), and it can be found using the Cholesky decomposition of (X + ξX)TB(X + ξX). Applying
ρskew(·) takes O(1). Finally, all other computations evolve products of matrices which cost at most O(dp2)
and computing the inverse of a p× p matrix. Thus, the total computational cost of (A.10) is O(TBp+ dp2).

Both forms of vector transport (A.8) and (A.10) satisfy [5, Definition 8.1.1]. The vector transport based
on the Cayley transform is derived in [13, Eq. (16)]. It features the same computational complexity as
computing the retraction (A.5).

A.2 Metric Related Notions
We detail the derivation of the Riemannian Hessian that led to (3.21) stated in Subsection 3.2. For the
derivation of the Riemannian Hessian we assume that the preconditioning scheme defining the Riemannian
metric is constant, i.e., MX := M for all X ∈ StB(p, d). We remark again that (3.21) holds also with a
non-constant MX at the critical points.

We use [5, Definition 5.5.1] of the Riemannian Hessian: For a real-valued function f on StB(p, d), at a
point X ∈ StB(p, d) the Riemannian Hessian Hessf(X) is a linear mapping of TXStB(p, d) into itself such
that

Hessf(X)[ηX ] = ∇ηXgradf(X),

for all ηX ∈ TXStB(p, d). In the previous equation, ∇ is the Riemannian connection, which should not be
confused with the Euclidean gradient.

First, we find the Riemannian connection on StB(p, d) and show that it is the classical directional deriva-
tive of vector fields projected on the tangent space. We can find the Riemannian connection in a similar
manner to the gradient computation performed in Section 3.2 by using [5, Proposition 5.3.2]: composing
the connection in the ambient space with the projection on the tangent space. Let ∇̄ be the Levi-Civita
connection on Rd×p endowed with the metric ḡ. Let (e1, ..., edp) = (E11, E21, ..., Ed1, E12, ..., Ed2, ..., Edp) be
the canonical basis of Rd×p, that is matrices Eij ∈ Rd×p such that their only non-zero element is in the ij-th
position and its value is 1. The matrices are ordered by columns, i.e., for i = kd+ r where k, r ∈ N∪{0} and
0 ≤ k ≤ p, 0 ≤ r < d we have that

ei =

{
Er,(k+1) r 6= 0

Ed,k r = 0

(first only the matrices with 1 in their first column appear, then in the second column, as so on). Then we
have

∇η(·)ξ(·) =
∑
i,j

(
ηi(·) ξj(·)∇ei(·)ej(·) + ηi(·)∂iξj(·)ej(·)

)
,
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where η(·), ξ(·), ei(·),∇η(·)ξ(·),∇ei(·)ej(·) are all vector fields on Rd×p (i.e., given a point X ∈ Rd×p the vector
field assigns a tangent vector in TXRd×p ∼= Rd×p, e.g., η(X) = ηX). In particular, η(·) and ξ(·) are smooth
local extensions of the vector fields η(·) and ξ(·) on StB(p, d) in a neighborhood of X ∈ StB(p, d) in Rd×p, in
the sense that for X ∈ Rd×p the vector fields η(·) and ξ(·) assign the same tangent vectors as η(·) and ξ(·).
Note that the vector field ∇η(·)ξ(·) at X depends on η(X) = ηX (see [6, Proposition 5.18.]). Thus, we can
write ∇η(·)ξ(·) at X in the following way ∇ηX ξ(X). In addition, given ηX ∈ TXStB(p, d) and a vector field
ξ(X) on StB(p, d), the connection ∇ηX ξ(X) is defined by ∇ηX ξ(X) according to [5, Equation 5.13] and it
does not depend on the local extension of ξ(X). Recall that

(
∇ei(·)ej(·)

)
k

= Γki,j (k-th coordinate of ∇eiej)
are the Christoffel symbols. These symbols determine the connection ∇ uniquely, using the Fundamental
Theorem of Riemannian Geometry for the Levi-Civita connection. The Christoffel symbols can be calculated
using

Γki,j =
1

2

dp∑
l=1

gkl(∂iglj + ∂jgli − ∂lgij),

where gkl is the (k, l)th entry of the inverse of the matrix dp× dp matrix G which is defined by

(G)kl := gkl = gX(ek, el) = gX(Eij , Ehm) = Tr
(
ET
ijMEhm

)
=

{
0 , j 6= m

Mih , j = m
.

Since the components of the matrix M do not depend on X and on (e1, ..., edp) (it is a constant matrix) we
have ∀i, j, k : Γki,j = 0. Therefore, ∇ is reduced to the classical directional derivative in Rd×p

∇ηX ξ(X) =

dp∑
j=1

dp∑
i=1

(
ηiX∂iξ

j(X)ej

)
= Jξ(X)ηX ,

where Jξ(X)ηX denotes the Jacobian matrix of ξ(X) at X in the direction ηX . Now that we have the
connection on the ambient space Rd×p, which is a Riemannian manifold, we can compute the connection on
the submanifold StB(p, d). Given ηX ∈ TXStB(p, d) and a vector field ξ(X) on StB(p, d), the Riemannian
connection is (written, as usual, in terms of ambient coordinates):

∇ηX ξ(X) = ΠX

(
∇ηX ξ(X)

)
= ΠX

(
Jξ(X)ηX

)
(A.11)

where ηX = ηX and ξ(·) is any smooth local extension of ξ(·) in a neighborhood of X ∈ StB(p, d) in Rd×p.
Next, we can find the Riemannian Hessian using (A.11), the product rule for derivation and according to

[44]:

Hessf(X)[ηX ] = ∇ηXgradf(X)

= ΠX

(
Jh(X)ηX

)
= ΠX

[
PXM

−1∇2f̄(X)ηX + (DΠX)[ηX ]M−1∇f̄(X)
]

= ΠX

(
M−1∇2f̄(X)ηX

)
+ ΠX

(
(DΠX)(X)[ηX ]M−1∇f̄(X)

)
(A.12)

where ∇f̄(X) and ∇2f̄(X) are the Euclidean gradient and Hessian (respectively) of f̄ and

h : Rd×p → Rd×p, h(X) = ΠX

(
M−1∇f̄(X)

)
.

Note that for X ∈ StB(p, d) we have h(X) = gradf(X) so h is a smooth local extension of the vector field
gradf to Rd×p, and its Jacobian is calculated as follows

Jh(X)ηX = (DΠX)[ηX ]M−1∇f̄(X) + ΠX

(
M−1∇2f̄(X)ηX

)
,
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where (DΠX)[ηX ] (here and in (A.12)) is the derivative at X along ηX of the function that maps X to ΠX .
The main challenge in computing the Riemannian Hessian from (A.12) is in computing (DΠX)[ηX ].

In order to circumvent this issue, we use a simple modification of a result found in [44] to the case in
which the Riemannian metric induced from Rd×p on any Riemannian submanifold of Rd×p is of the form
gX(ξX , ηX) = Tr

(
ξTXMηX

)
where M ∈ Rd×d is any constant, SPD matrix. In order to so, first we introduce

the notion of the Weingarten map.

Definition A.1. ([56, Section 6.1], [44, Definition 1]) Given a Riemannian manifoldM, a point x ∈ M on
the manifold, a tangent vector ηx ∈ TxM at x, and a normal vector ux ∈ (TxM)⊥, we define the Weingarten
map by

Wx (ηx, ux) := −Πx(Du(x)[ηx]) (A.13)

where u(·) is a smooth normal vector field onM which satisfies u(x) = ux.

For the manifold StB(p, d), viewed as an embedded submanifold of Rd×p, (A.13) reduces to

WX (ηX , U(X)) = −ΠX

(
JŪ(X)ηX

)
,

where Ū(·) is any smooth local extension of the normal vector field U(·) such that U(X) = UX on StB(p, d).
Now, that at a point X ∈ StB(p, d) any normal vector is of the form UX = M−1BXSX for some SX ∈
Ssym(p). Left multiplying by XTM we get XTMUX = XTMM−1BXSX = SX . Now we can define a
normal field on StB(p, d) by the formula U(X) = M−1BXSX such that U(X) = UX with SX = XTMUX
such that SX ∈ Ssym(p). The vector field can be extended to Rd×p by the same formula such that Ū(·) and
U(·) coincide on StB(p, d). Next, we calculate the Jacobian of Ū(X) at the direction ηX :

JŪ(X)ηX = M−1BηXSX ,

Therefore the Weingarten map for StB(p, d) is

WX (ηX , UX) = −ΠX(M−1BηXSX)

= −ΠX

(
M−1BηX

(
XTMUX

))
.

The following lemma is a simple modification of [44, Theorem 1]. Although the proof is almost identical,
we include it here for completeness.

Lemma A.2. For the Riemannian submanifold StB(p, d) of Rd×p endowed with ḡX(ξ̄X , η̄X) = Tr
(
ξ̄TXMη̄X

)
we have

WX

(
ηX ,Π

⊥
X

(
M−1U

))
= ΠX

(
(DΠX)[ηX ]

(
M−1U

))
= ΠX

(
(DΠX)[ηX ]

(
Π⊥X

(
M−1U

)))
,

for all X ∈ StB(p, d), ηX ∈ TXStB(p, d) and U ∈ Rd×p.

Proof. First, we show that

ΠX ((DΠX)[ηX ] (·)) = ΠX

(
(DΠX)[ηX ]

(
Π⊥X (·)

))
(A.14)

holds. Then applying both sided on M−1U gives us the equality

ΠX

(
(DΠX)[ηX ]M−1U

)
= ΠX

(
(DΠX)[ηX ]Π⊥X

(
M−1U

))
.

To show this, we take the directional derivative of the equality ΠX

(
Π⊥X (·)

)
= 0 in the direction ηX , and we

use Π⊥X (·) = (idTXRd×p −ΠX) (·) to get

0 = (DΠX)[ηX ]Π⊥X (·) + ΠX

(
(DΠ⊥X)[ηX ] (·)

)
= (DΠX)[ηX ]Π⊥X (·)−ΠX ((DΠX)[ηX ] (·)) .
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Substituting any tangent vector in both sides of the equation nullifies the term (DΠX)[ηX ]Π⊥X (·). Thus, we
substitute ΠX and use Π⊥X (ΠX (·)) = 0

0 = ΠX ((DΠX)[ηX ] (ΠX (·))) .

Finally, to get (A.14), we use idTXRd×p (·) =
(
ΠX + Π⊥X

)
(·) and get

ΠX ((DΠX)[ηX ] (·)) = ΠX

(
(DΠX)[ηX ]

((
ΠX + Π⊥X

)
(·)
))

= ΠX

(
(DΠX)[ηX ]

(
Π⊥X (·)

))
.

To conclude the proof we show that WX

(
ηX ,Π

⊥
X

(
M−1U

))
= ΠX

(
(DΠX)[ηX ]

(
M−1U

))
. Note that for

embedded submanifolds of Rd×p with a metric derived fromM , the Weingarten map reduces toWX (ηX , UX) =
−ΠX

(
JU(X)ηX

)
. Using Definition A.1 along this observation, we have

WX

(
ηX ,Π

⊥
X

(
M−1U

))
= −ΠX

(
JΠ⊥X(M−1U(X))ηX

)
= −ΠX

(
(DΠ⊥X)[ηX ]

(
M−1UX

))
−ΠX

(
Π⊥X

(
JM−1U(X)ηX

))
= ΠX

(
(DΠX)[ηX ]

(
M−1UX

))
,

where in the last equality we used ΠX

(
Π⊥X (·)

)
= 0 and Π⊥X (·) = (idTXRd×p −ΠX) (·).

As a consequence of Lemma A.2, we can replace ΠX

(
(DΠX)[ηX ]

(
M−1∇f̄(X)

))
byWX

(
ηX ,Π

⊥
X

(
M−1∇f̄(X)

))
in (A.12). Therefore the expression for the Riemannian Hessian becomes

Hessf(X)[ηX ] = ΠX

(
M−1∇2f̄(X)ηX

)
+WX

(
ηX ,Π

⊥
X

(
M−1∇f̄(X)

))
.

In particular, the Riemannian Hessian on StB(p, d) is

Hessf(X)[ηX ] = ΠX

(
M−1∇2f̄(X)ηX

)
−ΠX

(
M−1BηX

(
XTM

(
Π⊥X

(
M−1∇f̄(X)

))))
Note that some simplification of these expressions can be made by using Π⊥X = idTXStB(p,d) −ΠX :

Hessf(X)[ηX ] = ΠX

(
M−1∇2f̄(X)ηX

)
−ΠX

(
M−1BηX

(
XT∇f̄(X)−XTM

(
ΠX

(
M−1∇f̄(X)

))))
= ΠX

(
M−1∇2f̄(X)ηX

)
−ΠX

(
M−1BηX

(
XT∇f̄(X)−XTMgradf(X)

))
.

B Experiments With p = 2

Similarly to the experiments in Subsection 4.2, we perform experiments with the MEDIANILL dataset to
demonstrate CCA for p = 2. We use the same choices for Riemannian metric: the trivial choice of a unit
matrix M = Id, the standard but expensive choice M = Σ, and four approximations of Σ via the (exact)
sketched preconditioning strategy. Finding the top two correlations requires the von Neumann cost function
[57] formulation:

maxTr
(
UTΣxyV N

)
subject to

UTΣxxU = Ip
V TΣyyV = Ip

where N = diag (µ1, µ2) and any µ1 > µ2 > 0 (here we take µ1 = 5 and µ2 = 1). The corresponding
Riemannian components are constructed in a similar manner to Subsection 4.2.

The graphs in Fig. 2 demonstrate that the choice M = Σ leads to the lowest iteration count. This
observation is also supported by the condition number of the Riemannian Hessian at the optimum, which is
evaluated using Manopt: the lowest condition number, 115.68, is achieved when M = Σ, and the highest,
805.2, for M = Id.
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Figure 2: Results for CCA with Riemannian conjugate-gradient (left - suboptimality vs. #iterations) and
Riemannain trust-region (right - suboptimality vs. products with the data matrices) with various choices of
metrics for p = 2. The number of leading eigenvalues used to form the Dominant Subspace Preconditioner is
denoted by k.

35


	Introduction
	Related Work

	Preliminaries
	Notation and Basic Definitions
	Riemannian Optimization

	Preconditioned Geometric Components for the Generalized Stiefel Manifold
	Metric Independent Notions
	Metric Related Notions
	Computational Costs
	Product Manifold of Generalized Stiefel Manifolds
	 Metric Selection and Riemannian Hessian Conditioning

	 Theoretical and Numerical Illustrations
	Simple Theoretical Examples
	Canonical Correlation Analysis: Theory and Experiment

	Conclusions
	Further Details on the Preconditioned Geometric Components
	Metric Independent Notions
	Metric Related Notions

	Experiments With p=2

