7,727 research outputs found

    Accelerated graph-based spectral polynomial filters

    Full text link
    Graph-based spectral denoising is a low-pass filtering using the eigendecomposition of the graph Laplacian matrix of a noisy signal. Polynomial filtering avoids costly computation of the eigendecomposition by projections onto suitable Krylov subspaces. Polynomial filters can be based, e.g., on the bilateral and guided filters. We propose constructing accelerated polynomial filters by running flexible Krylov subspace based linear and eigenvalue solvers such as the Block Locally Optimal Preconditioned Conjugate Gradient (LOBPCG) method.Comment: 6 pages, 6 figures. Accepted to the 2015 IEEE International Workshop on Machine Learning for Signal Processin

    Preconditioning complex symmetric linear systems

    Get PDF
    A new polynomial preconditioner for symmetric complex linear systems based on Hermitian and skew-Hermitian splitting (HSS) for complex symmetric linear systems is herein presented. It applies to Conjugate Orthogonal Conjugate Gradient (COCG) or Conjugate Orthogonal Conjugate Residual (COCR) iterative solvers and does not require any estimation of the spectrum of the coefficient matrix. An upper bound of the condition number of the preconditioned linear system is provided. Moreover, to reduce the computational cost, an inexact variant based on incomplete Cholesky decomposition or orthogonal polynomials is proposed. Numerical results show that the present preconditioner and its inexact variant are efficient and robust solvers for this class of linear systems. A stability analysis of the method completes the description of the preconditioner.Comment: 26 pages, 4 figures, 4 table

    Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations

    Get PDF
    A new and detailed analysis of the basic Uzawa algorithm for decoupling of the pressure and the velocity in the steady and unsteady Stokes operator is presented. The paper focuses on the following new aspects: explicit construction of the Uzawa pressure-operator spectrum for a semiperiodic model problem; general relationship of the convergence rate of the Uzawa procedure to classical inf-sup discretization analysis; and application of the method to high-order variational discretization

    A Bramble-Pasciak conjugate gradient method for discrete Stokes equations with random viscosity

    Full text link
    We study the iterative solution of linear systems of equations arising from stochastic Galerkin finite element discretizations of saddle point problems. We focus on the Stokes model with random data parametrized by uniformly distributed random variables and discuss well-posedness of the variational formulations. We introduce a Bramble-Pasciak conjugate gradient method as a linear solver. It builds on a non-standard inner product associated with a block triangular preconditioner. The block triangular structure enables more sophisticated preconditioners than the block diagonal structure usually applied in MINRES methods. We show how the existence requirements of a conjugate gradient method can be met in our setting. We analyze the performance of the solvers depending on relevant physical and numerical parameters by means of eigenvalue estimates. For this purpose, we derive bounds for the eigenvalues of the relevant preconditioned sub-matrices. We illustrate our findings using the flow in a driven cavity as a numerical test case, where the viscosity is given by a truncated Karhunen-Lo\`eve expansion of a random field. In this example, a Bramble-Pasciak conjugate gradient method with block triangular preconditioner outperforms a MINRES method with block diagonal preconditioner in terms of iteration numbers.Comment: 19 pages, 1 figure, submitted to SIAM JU
    • …
    corecore