
Research Article
Preconditioning Complex Symmetric Linear Systems

Enrico Bertolazzi and Marco Frego

Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy

Correspondence should be addressed to Enrico Bertolazzi; enrico.bertolazzi@unitn.it

Received 11 July 2014; Revised 4 November 2014; Accepted 27 November 2014

Academic Editor: Luca Bergamaschi

Copyright © 2015 E. Bertolazzi and M. Frego. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A new preconditioner for symmetric complex linear systems based on Hermitian and skew-Hermitian splitting (HSS) for
complex symmetric linear systems is herein presented. It applies to conjugate orthogonal conjugate gradient (COCG) or conjugate
orthogonal conjugate residual (COCR) iterative solvers and does not require any estimation of the spectrum of the coefficient
matrix. An upper bound of the condition number of the preconditioned linear system is provided. To reduce the computational
cost the preconditioner is approximated with an inexact variant based on incomplete Cholesky decomposition or on orthogonal
polynomials. Numerical results show that the present preconditioner and its inexact variant are efficient and robust solvers for this
class of linear systems. A stability analysis of the inexact polynomial version completes the description of the preconditioner.

1. Introduction

Focus of this paper is the solution of the complex linear
system given by Ax = b, where the symmetric complex
matrix A has the property that can be written as A = B + iC
with B, C two real symmetric positive semidefinite matrices
(semi-SPD) and B + C a symmetric positive definite (SPD)
matrix. This kind of linear system arises, for example, in the
discretization of problems in computational electrodynamics
[1] or time-dependent Schrödinger equations, or in conduc-
tivity problems [2, 3].

If A is Hermitian, a straightforward extension of the
conjugate gradients (CG) algorithm can be used [4]. Unfor-
tunately, the CG method cannot be directly employed when
A is only complex symmetric; thus, some specialized iterative
methodsmust be adopted. An effective one is theHSSwith its
variants (MHSS), which need, at each iteration, the solution
of two real linear systems. Other standard procedures to
solve this problem are given by numerical iterative methods
based on Krylov spaces and designed for complex symmetric
linear systems: COCG [1], COCR [5], CSYM [6], and CMRH
[7]. Some iterative methods for non-SPD linear systems like
BiCGSTAB [8], BiCGSTAB(ℓ) [9, 10], GMRES [11], andQMR
[12] can be adapted for complex symmetric matrices [4, 13,
14].

In this work a preconditioned version of COCG and
COCR is proposed: the aim is the solution of complex linear
systems, where the preconditioner is a single preconditioned
MHSS iteration (PMHSS).ThePMHSS stepmay be too costly
or impracticable, thus cheaper approximations must be used,
in this work some approximations are considered, and a
polynomial preconditioner as a possible approximation of the
PMHSS step is presented.

Methods based on Hermitian and skew-Hermitian split-
ting (HSS) [15–18] can be used as standalone solvers or
combined (as preconditioner) together with CG like algo-
rithms.The speed of convergence of CG like iterative schemes
depends on the condition number of the matrix A; thus,
preconditioning is a standard way to improve convergence
[19, 20]. Incomplete LU is a standard and accepted way to
precondition linear systems. Despite its popularity, incom-
plete LU is potentially unstable, is difficult to parallelize, and
lacks algorithmic scalability. Nevertheless, when incomplete
LU is feasible and the preconditioned linear system is well
conditioned, the resulting algorithm is generally the best
performing.

In this work we focus on large problems, where incom-
plete LU preconditioning is too costly or not feasible. In
this case, iterative methods like SSOR are used as pre-
conditioners, but a better performance is obtained using

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 548609, 20 pages
http://dx.doi.org/10.1155/2015/548609

2 Mathematical Problems in Engineering

HSS iterative methods, which allow reducing the condition
number effectively. However, HSS iterative methods need
the solution of two SPD real systems at each step. Standard
preconditioned CG methods can be used at each iteration
[18] which can again be preconditioned with an incomplete
Cholesky factorization, although for very large problems, the
incomplete Cholesky factorization may be not convenient
or not feasible. As an alternative, in the present paper a
polynomial preconditioner is proposed, which allows solving
the linear system for large matrices. Polynomial precondi-
tioners do not have a good reputation as preconditioners
[19, 20] and research on this subject was dropped in the late
80s. In fact, polynomial preconditioners based on Cheby-
shev polynomials need accurate estimates of minimum and
maximum eigenvalues, while least squares polynomials were
not computed using stable recurrences, limiting the degree
of available stable polynomials [21–25]. However, in the last
years, polynomial preconditioner received attention again
after the works of Lu et al. [26]. Notwithstanding anything
contained above, here we propose as a preconditioner the
use of a polynomial approximation of a modified HSS
step. A specialization for Chebyshev and Jacobi orthogonal
polynomials is discussed and the corresponding polynomial
preconditioner is evaluated using a stable recurrence which
permits using very high degree polynomials.

The paper has this structure. Section 1.1 describes the
problem and gives a brief summary of existing methods
for the resolution with the fundamental results and variants
that lead to the present method; in particular, the HSS is
considered. Section 2 shows how to use one step of the
MHSS method as a preconditioner and gives a bound on
the conditioning number of the MHSS iteration matrix.
Section 3 explains the iterative solution method with the
strategy to adopt when Cholesky factorization is possible or
not. Section 4 presents a scale transformation of the system
in order to move the eigenvalues to the range (0, 1]. Section 5
describes the polynomial preconditioner based first on least
squares and then in terms of orthogonal polynomials and
furnishes a stable recurrence for the computation of polyno-
mial preconditioners for high degrees. The specialization for
Chebyshev and Jacobi orthogonal polynomials is presented.
Section 6 studies the numerical stability of this process and
Section 7 shows some numerical results; Section 8 concludes
the paper.

1.1. The MHSS Iterative Solver. The complex 𝑁 × 𝑁 linear
system Ax = b, where A is complex symmetric, is solved
via an iterative method based on a splitting algorithm (HSS).
The preconditioner requires to solve (each time it is applied)
two real symmetric and positive definite (SPD) linear
systems.

The HSS scheme can be summarized in this manner:
rewrite the vector x of the unknowns as the sum of real and
imaginary part, x = y + iz, and accordingly, the right hand
side b = c + id, then the system Ax = b is rewritten
as

(B + iC) (y + iz) = c + id, (1)

so that the two steps of the modified HSS method proposed
in [15] result in

(V + B) x(𝑘+1/2) = (V − iC) x(𝑘) + b,

(W + C) x(𝑘+1) = (W + iB) x(𝑘+1/2) − ib,
(2)

for suitablematricesV andW.The previous procedure can be
rewritten as a single step of a splitting based scheme Px𝑘+1 =
Qx𝑘 + b by posing

P = (V + B) [W − iV]−1 (W + C) ,

Q = (V + B) [W − iV]−1 (W + iB) (V + B)−1 (V − iC) .
(3)

This iterative method converges if the iteration matrix P−1Q,
for example,

P−1Q = (W + C)−1 (W + iB) (V + B)−1 (V − iC) , (4)

has spectral radius strictly less than one. It is well known that
the choiceV = W = 𝛼I, for a given positive constant 𝛼, yields
the standardHSSmethod [15–17] for which an estimate of the
spectral radius is given by

󰜚 (P−1Q) ≤ max
𝑗=1,2,...,𝑁

{
{

{
{

{

√𝛼

2
+ 𝜆𝑗 (B)2

(𝛼 + 𝜆𝑗 (B))

}
}

}
}

}

, (5)

where 𝜆𝑗(B) are the eigenvalues of the SPD matrix B. The
optimal value for 𝛼 can also be computed [15–17] and is

𝛼opt = arg min
𝛼

max
𝑗=1,2,...,𝑛

{
{

{
{

{

√𝛼

2
+ 𝜆𝑗 (B)2

(𝛼 + 𝜆𝑗 (B))

}
}

}
}

}

= √𝜆min (B) 𝜆max (B).

(6)

From the previous formulas, it is clear that those computa-
tions rely on the knowledge (or estimate) of the minimum
and maximum eigenvalue of the matrix B, which is, in
general, a hard problem.

Another possible choice forV andW isV = 𝛼B andW =

𝛽B which yields, when 𝛼 = 𝛽, a variant of the MHSS method
by [15–17]. In the next lemma, an upper bound of the spectral
radius of the iteration matrix is given.

Lemma 1. Let V = 𝛼B and W = 𝛽B in (4) with B a SPD
matrix and C a semi-SPD matrix, 𝛼, 𝛽 > 0; then the spectral
radius of P−1Q satisfies the upper bound

󰜚 (P−1Q) ≤ 𝑈 (𝛼, 𝛽) , 𝑈 (𝛼, 𝛽) =

√1 + 𝛽

2

1 + 𝛼

max{1, 𝛼
𝛽

}

(7)

and the minimum value of the upper bound𝑈(𝛼, 𝛽) is attained
when 𝛼 = 𝛽 = 1 where 𝑈(1, 1) = √

2/2 ≈ 0.707.

Mathematical Problems in Engineering 3

Proof. Substituting V = 𝛼B andW = 𝛽B in (4) yields

P−1Q = (𝛽B + C)−1 (𝛽B + iB) (𝛼B + B)−1 (𝛼B − iC)

=

𝛽 + i

1 + 𝛼

(𝛽B + C)−1 (𝛼B − iC) .
(8)

If 𝜆 is an eigenvalue of matrix P−1Q, it satisfies

0 = det (P−1Q − 𝜆I)

⇓

0 = det(
𝛽 + i

1 + 𝛼

(𝛼B − iC) − 𝜆 (𝛽B + C))

⇓

0 = det((𝛼
𝛽 + i

1 + 𝛼

− 𝜆𝛽)B − (i
𝛽 + i

1 + 𝛼

+ 𝜆)C)

⇓

0 = det(
𝛼 (i − 𝜆𝛽) + 𝛽 (𝛼 − 𝜆)

𝜆 (𝛼 + 1) − 1 + 𝛽i
B − C) .

(9)

Thus, 𝜇 defined as

𝜇 =

𝛼 (i − 𝜆𝛽) + 𝛽 (𝛼 − 𝜆)

𝜆 (𝛼 + 1) − 1 + 𝛽i
, (10)

is a generalized eigenvalue; that is, it satisfies det(𝜇B−C) = 0

and it is well known that 𝜇must be nonnegative. Computing
𝜆 from (10), the function 𝜆(𝜇) is found to be

𝜆 (𝜇) :=

(𝛼 + i𝜇) (𝛽 + i)

(1 + 𝛼) (𝛽 + 𝜇)

, (11)

which allows evaluating an upper bound 𝑈(𝛼, 𝛽) of the
spectral radius of P−1Q:

󰜚 (P−1Q) ≤ sup
𝜇≥0

󵄨
󵄨
󵄨
󵄨

𝜆 (𝜇)

󵄨
󵄨
󵄨
󵄨

= sup
𝜇≥0

√𝛼

2
+ 𝜇

2
√1 + 𝛽

2

(1 + 𝛼) (𝛽 + 𝜇)

≤ 𝑈 (𝛼, 𝛽) .

(12)

There are optimal values of 𝛼 and 𝛽 that minimize𝑈(𝛼, 𝛽) for
𝛼 ≥ 0 and 𝛽 ≥ 0. To find them, set 𝛼 = ℓ sin 𝜃 and 𝛽 = ℓ cos 𝜃
with 𝜃 ∈ [0, 𝜋/2]; then

𝑈(𝛼, 𝛽) =

√
1 + ℓ

2
(cos 𝜃)2

1 + ℓ sin 𝜃
max {1, tan 𝜃} . (13)

If 𝜃 is fixed, the minimum of this last expression is for ℓ =

sin 𝜃/(cos 𝜃)2 corresponding to

𝑈 (𝛼, 𝛽) = cos 𝜃max {1, tan 𝜃} = max {cos 𝜃, sin 𝜃}

for 𝜃 ∈ [0, 𝜋
2

] .

(14)

The minimum of 𝑈(𝛼, 𝛽) is attained for 𝜃 = 𝜋/4, which
corresponds to 𝛼 = 𝛽 = 1. The computation of 𝑈(1, 1) is
then straightforward.

r ← b; x ← 0;
while ‖r‖ > 𝜀‖b‖ do

Solve (B + C)h = ((1 − i)/2)r;
x ← x + h;
r ← b − Ax;

end while

Algorithm 1: MHSS iterative solver for Ax = (B + iC)x = b.

In this setting, since 𝛼 = 𝛽 = 1 are optimal, from now on
it is assumed 𝛼 = 𝛽 = 1 and therefore V = W = B. Using
these values, the two-step method (2) is recast as the one step
method:

x(𝑘+1) = P−1 (Qx(𝑘) + b) = x(𝑘) + P−1 (b − Ax(𝑘)) , (15)

where the simplified expressions for P andQ are

P = (1 + i) (B + C) , Q = C + iB. (16)

Notice that P is well defined and nonsingular provided that
B + C is not singular. Thus the assumptions of Lemma 1 are
weakened when 𝛼 = 𝛽 = 1, resulting in the next corollary.

Corollary 2. LetB andC be semi-SPDwithB+C not singular
andP andQ as defined in (16); then the spectral radius ofP−1Q
satisfies the upper bound 󰜚(P−1Q) ≤ √

2/2.

Remark 3. The spectral radius of the iteration matrix is
bounded independently of its size; thus, once the tolerance
is fixed, the maximum number of iterations is independent
of the size of the problem.

The iterative method (15) can be reorganized in Algo-
rithm 1.

Remark 4. The MHSS iterative solver of Algorithm 1 needs
at each iteration the resolution of two real linear systems,
respectively, for the real and imaginary part, whose coefficient
matrices are SPD, namely, B + C. For small matrices this
can be efficiently done by using Cholesky decomposition.
For large and sparse matrices a preconditioned conjugate
gradient method is mandatory.

Although Algorithm 1 can be used to solve the linear
system (1), better performance is obtained using one or more
steps of Algorithm 1 not for solving the linear system (1)
but as a preconditioner for a faster conjugate gradient like
iterative solver such as COCG or COCR. The convergence
rate estimation for these iterative schemes for a linear system
Mx = (B + C)x = b depends on the condition number
𝜅2 = ‖M‖2‖M−1‖2, where ‖M‖2 = √󰜚(M𝑇M) is the classic
spectral norm of a matrix. The energy norm ‖ ⋅ ‖M induced
by the (real) SPD matrixM is used to obtain the well known
estimate
󵄩
󵄩
󵄩
󵄩
󵄩

x(𝑘) − x⋆󵄩󵄩󵄩
󵄩
󵄩M

󵄩
󵄩
󵄩
󵄩

x(0) − x⋆󵄩󵄩󵄩
󵄩M

≤ 2(

√𝜅2 − 1

√𝜅2 + 1
)

𝑘

, ‖k‖M =
√k𝑇Mk, (17)

4 Mathematical Problems in Engineering

where x⋆ is the solution of the linear system. In general,
conjugate gradient-like iterative schemes perform efficiently
if a good preconditioner makes the system well conditioned.

2. Use of MHSS as Preconditioner

In this section the effect of a fixed number of steps of
Algorithm 1, used as a preconditioner for the linear system (1),
is analyzed in terms of the reduction of the condition number.
Performing 𝑛 steps of Algorithm 1 with x(0) = 0 is equivalent
to compute x(𝑛) = P−1𝑛 b, where

P
−1

𝑛 = (I + P−1Q + (P−1Q)
2
+ ⋅ ⋅ ⋅ + (P−1Q)

𝑛−1
)P−1. (18)

MatrixP𝑛 can be interpreted as an approximation of matrix
A = B + iC.

Thus, it is interesting to obtain an estimate of the condi-
tion number of the preconditioned matrixP−1𝑛 A in order to
check the effect of MHSS when used as preconditioner.

For the estimation, we need to recall some classical results
about spectral radii and norms. For any matrix M and any
matrix norm, Gelfand’s Formula connects norm and spectral
radius [27, 28]:

󰜚 (M) = lim sup
𝑘→∞

󵄩
󵄩
󵄩
󵄩
󵄩

M𝑘󵄩󵄩󵄩
󵄩
󵄩

1/𝑘
. (19)

Notice that when 󰜚(M) < 1, for 𝑘 large enough, ‖M𝑘‖ < 1.

Lemma 5. LetA = P−Q so that P−1Q is such that 󰜚(P−1Q) <
1; then for any 𝜀 > 0 satisfying 󰜚(P−1Q) + 𝜀 < 1 there is an
integer 𝑛𝜀 > 0 such that

𝜅 (P
−1

𝑛 A) ≤
1 + (󰜚 (P−1Q) + 𝜀)

𝑛

1 − (󰜚 (P−1Q) + 𝜀)𝑛
, 𝑛 ≥ 𝑛𝜀,

(20)

where 𝜅(M) = ‖M‖‖M−1‖ is the condition number with respect
to the norm ‖ ⋅ ‖ andP𝑛 is defined by (18).

Proof. Observe that P−1A = P−1(P − Q) = I − P−1Q; hence
using (18) the preconditioned matrix becomes P−1𝑛 A = I −
(P−1Q)𝑛. From Gelfand’s Formula (19) there exists 𝑛𝜀 such
that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(P−1Q)
𝑛󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ (󰜚 (P−1Q) + 𝜀)
𝑛
< 1 ∀𝑛 ≥ 𝑛𝜀 (21)

and from (21), by settingM = (P−1Q)𝑛, the convergent series
(see [29, 30]) gives a bound for the norm of the inverse

(I −M)

−1
=

∞

∑

𝑘=0

M𝑘, 󵄩
󵄩
󵄩
󵄩
󵄩

(I −M)

−1󵄩󵄩
󵄩
󵄩
󵄩

≤

∞

∑

𝑘=0

‖M‖

𝑘
=

1

1 − ‖M‖

,

𝜅 (P
−1

𝑛 A) = 𝜅 (I −M) = ‖I −M‖

󵄩
󵄩
󵄩
󵄩
󵄩

(I −M)

−1󵄩󵄩
󵄩
󵄩
󵄩

≤

1 + ‖M‖

1 − ‖M‖

.

(22)

The thesis follows trivially from (21).

Corollary 6. Let A = P − Q so that P−1Q has the property
that 󰜚(P−1Q) < 1; then there exists a matrix norm |‖ ⋅ ‖| such
that the conditioning number of the matrixP−1𝑛 A with respect
to this norm satisfies

𝜅 (P
−1

𝑛 A) ≤
1 + 0.8

𝑛

1 − 0.8

𝑛
≤ 9, (23)

where 𝜅(M) = |‖M‖||‖M−1‖|.

Proof. Recall that for any matrix M and 𝜖 > 0 there exists
a matrix norm |‖ ⋅ ‖| such that |‖M‖| ≤ 󰜚(M) + 𝜖. This is a
classical result of linear algebra; see, for example, Section 2.3
of [29] or Section 6.9 of [30]. Thus, given P−1Q and choosing
0 < 𝜀 ≤ 0.8 −

√
2/2 there exists a matrix norm |‖ ⋅ ‖| such that

|‖P−1Q‖| ≤ 0.8. The proof follows from Lemma 5.

FromCorollary 2 using the Euclidean norm and choosing
𝜀 such that 󰜚(P−1Q) + 𝜀 =

√
2/2 + 𝜀 = 0.8 for 𝑛 ≥ 𝑛𝜀, the

condition number of the preconditioned matrix satisfies

𝜅2 (P
−1

𝑛 A) ≤
1 + 0.8

𝑛

1 − 0.8

𝑛
, 𝜅2 (M) = ‖M‖2

󵄩
󵄩
󵄩
󵄩
󵄩

M−1󵄩󵄩󵄩
󵄩
󵄩2
. (24)

This estimate shows that using 𝑛 steps of MHSS, with 𝑛

large enough, the condition number of the preconditioned
system can be bounded independently of the size of the
linear system. In practice, when 𝑛 = 1 the reduction of the
condition number is enough; in fact, Corollary 6 shows that,
using the appropriate norm, the condition number of the
preconditioned linear system is less than 9, independently of
its size.

Remark 7. From [31], when the condition number 𝜅 is large,
the estimate of𝑚 conjugate gradient (CG) iterations satisfies
𝑚 ∝ √𝜅. The cost of computation is proportional to the
number of iterations, whereas the cost of each iteration is
proportional to 1 + 𝐶𝑛, where 𝐶 is the cost of an iteration
of MHSS used as preconditioner, relative to the cost of a CG
step.Thus, using 𝜅2 from (24), when 𝑛 is large enough, a rough
estimate of the computational cost is

cost ∝ √𝜅2 (P
−1
𝑛 A) (1 + 𝐶𝑛) ∝ √

1 + 0.8

𝑛

1 − 0.8

𝑛
(1 + 𝐶𝑛) .

(25)

Fixing 𝐶, the cost (25), as a function of 𝑛 alone, is convex and
has a minimum for 𝑛 = 𝑛min(𝐶) which satisfies

𝐶 =

−𝑎

𝑛 ln (𝑎)
𝑎

𝑛 ln (𝑎) − 𝑎2𝑛 + 1
, 𝑎 = 0.8. (26)

The inverse function 𝐶(𝑛) which satisfies 𝑛min(𝐶(𝑛)) = 𝑛 is
the right hand side of (26); moreover, 𝐶(𝑛) is a monotone
decreasing function so that also 𝑛min(𝐶) ismonotone decreas-
ing.

Table in equation (27) shows the constant 𝐶 as a function
of 𝑛 giving the critical values of 𝐶 such that 𝑛 steps of MHSS
are better than 𝑛 − 1 steps,

𝑛min 1 2 3 4 5 6 7

𝐶 (𝑛min) 0.98 0.47 0.29 0.2 0.14 0.1 0.07

. (27)

Mathematical Problems in Engineering 5

r ← b − Ax;
r̃ ← P−1r;
p ← r̃;
𝜌 ← [r̃, r];
while ‖r‖ > 𝜀‖b‖ do

q ← Ap;
𝜇 ← [q, p];
𝛼 ← 𝜌/𝜇;
x ← x + 𝛼p;
r ← r − 𝛼q;
r̃ ← P−1r;
𝛽 ← 𝜌;
𝜌 ← [r̃, r];
𝛽 ← 𝜌/𝛽;
p ← r̃ + 𝛽p;

end while

Algorithm 2: COCG.

This means that it is convenient to use 𝑛 > 1 steps in the
preconditioner MHSS only if the cost of one step of MHSS is
less than 0.47, that is, half of one step of the conjugate gradient
method, a situation that never happens in practice.

According to Remark 7, onlyP𝑛 with 𝑛 = 1 is considered;
that is,P1 = P as preconditioner for the linear system (1).

3. Iterative Solution of Complex Linear System

From the previous section, it is clear that the use of one
iteration step of MHSS is a good choice that lowers the
condition number of the original complex linear system (1).
The resulting preconditioner matrix is P = (1 + i)(B + C)
as defined in (16). Preconditioner P will be used together
with semi-iterative methods specialized in the solution of
complex problems. Examples of those methods include
COCG [4, 32] or COCR [5, 32–34]. They are briefly exposed
in Algorithms 2 and 3.

There are also othermethods available for performing this
task, for example, CSYM [6] or QMR [35].

The application of the preconditionerP for thosemethods
is equivalent to the solution of two real SPD systems depend-
ing on B + C, as in Remark 4. Of course, one can use a direct
method [20, 36–38], or a conjugate gradientmethod [18] with
incomplete Cholesky factorizations, or approximate inverse
as a preconditioner [20, 39–43].

For very large linear systems B + C may be expensive or
impractical to be formed; moreover, well suited variants of
the incomplete Cholesky factorization or of the sparse inverse
must be considered [44–46]. In the next section, a polynomial
preconditioner based on orthogonal polynomials is presented;
it will allow solving very large complex linear systems with a
simple algorithm that can be implemented with few lines of
code.

The suggested strategy to get the solution of the complex
linear system of the form Ax = (B + iC)x = b is to
use an iterative method like COCG (Algorithm 2) or COCR

r ← b − Ax;
r̃ ← P−1r;
p ← r̃;
q ← Ap;
𝜌 ← [r̃, q];
while ‖r‖ > 𝜀‖b‖ do

q̃ ← P−1q;
𝛼 ← 𝜌/[q̃, q];
x ← x + 𝛼p;
r ← r − 𝛼q;
r̃ ← r̃ − 𝛼q̃;
t ← Ar̃;
𝛽 ← 𝜌;
𝜌 ← [r̃, t];
𝛽 ← 𝜌/𝛽;
p ← r̃ + 𝛽p;
q ← t + 𝛽q

end while

Algorithm 3: COCR (as in [32]).

(Algorithm 3) preconditioned with P = (1 + i)(B + C).
The fully populated factorization of P−1 for large or huge
linear systems is not practically computable so that some
approximation must be used.The strategy can be split in two.

(1) Compute (B + C)z = k/(1 + i) by using iterative
methods. This can be organized as the solution of
two SPD real system, one for the real and one for the
imaginary part. This systems can be efficiently solved
by using preconditioned conjugate gradient.

(2) Approximate (B +C)−1 = Q + E with ‖E‖ “small” and
use (1 + i)−1Q−1 as approximate preconditioner.

Approximations of strategy 2 can be used as preconditioners
for strategy 1. In strategy 2 the approximation must not be
too far from the inverse of (1 + i)(B + C); otherwise the
convergence will fail. In general for strategy 2 the choice of
the preconditioner can be done as follows.

(i) If the complete Cholesky of B + C = LL𝑇 is available
use P = (1 + i)LL𝑇 as preconditioner.

(ii) If the incomplete Cholesky of B + C =
̃L̃L𝑇 + E is

computationally not too expensive and ‖E‖ is “small”
then use P = (1 + i)̃L̃L𝑇 as preconditioner.

(iii) If ‖E‖ is “too large” or the solution of (B+C)z = k/(1+
i) by means of PCG with Q =

̃L̃L𝑇 as preconditioner
is too costly, try some alternative. In particular try:

(a) Approximate (B + C)−1 using sparse inverse
[39, 47–50] or algebraicmultigrid [51–53] or any
other good approximation.

(b) Use the polynomial preconditioner proposed in
Section 5.

Incomplete LU decomposition is easy to set up and exhibits
good performances, while better performance may be
obtained by using algebraic multigrid method (AMG); how-
ever, comparisons with AMG are difficult because of the large

6 Mathematical Problems in Engineering

number of parameters to set up, like the depth and the shape
of the W-cycle and the smoother (or relaxation method) and
the coarse grid correction step.

If incomplete Cholesky fails or it gives poor precon-
ditioning, we propose a simple but effective polynomial
preconditioner for which we give details such as stability and
convergence properties. Notice that the optimal precondi-
tioner is problem dependent and a good preconditioner for
a problem may be a bad preconditioner for another one. The
polynomial preconditioner proposed in Section 5, without
being optimal, is extremely simple to implement and easily
parallelizable and ensures convergence also for very large
linear systems. Finally, polynomial preconditioners have the
following benefits with respect to incomplete Cholesky and
algebraic multigrid.

(i) If matrix-vector multiplication (B+ 𝑖C)z can be com-
puted but the matrices B and C cannot be explicitly
formed, the polynomial preconditioner is computable
while incomplete LU and algebraic multigrid cannot
be built.

(ii) Polynomial preconditioners are easily parallelizable.
(iii) The polynomial preconditioner never breaks down as

it can happen to incomplete Cholesky or algebraic
multigrid.

(iv) The polynomial preconditioner can be extended also
for problems with a singular matrix.

Strategy number 1, that is, computing (B + C)z = k/(1 +
i) by using iterative methods (e.g., PCG), is in general not
competitive. In fact, to be competitive, the system should
be solved with very few iterations, but this means that the
preconditioner forB+C is very good; therefore it can be used
directly and successfully in strategy number 2.

4. Scaling the Complex Linear System

The polynomial preconditioner presented in the next section
depends on the knowledge of an interval containing eigenval-
ues. Scaling is a cheap procedure to recast the problem into
one with eigenvalues in the interval (0, 1]. Using the diagonal
matrix S, the linear system (1) becomes

(SAS)w = (SBS + iSCS)w = Sb, with x = Sw, (28)

where S is a real diagonal matrix with positive entries on
the diagonal. The scaled system inherits the properties of the
original and still has the matrices SBS and SCS semi-SPD
with SBS + SCS SPD. The next lemma shows how to choose
a good scaling factor S used forward.

Lemma 8. Let M be a SPD matrix and S a diagonal matrix
with 𝑆𝑖𝑖 = (∑

𝑛

𝑗=1 |𝑀𝑖𝑗|)
−1/2; then the scaled matrix SMS has the

eigenvalues in the range (0, 1].

Proof. Notice that SMS is symmetric and positively defined
and is similar to S2M. Moreover, the estimate 𝜆max(S2M) ≤

‖S2M‖∞ = 1 follows trivially.

Assumption 9. From Lemma 8, the linear system (1) is scaled
to satisfy the following:

(i) matrices B and C are semi-SPD;
(ii) matrix B + C is SPD with eigenvalues in (0, 1].

5. Preconditioning with Polynomials

On the basis of the results of the previous sections with
Assumption 9, the linear system to be preconditioned has the
form Ax = b with A = B + iC with B and C semi-SPD and
M = B + C SPD with eigenvalues distributed in the interval
(0, 1].

A good preconditioner for this linear system is one step
of MHSS in Algorithm 1, which results in a multiplication by
P−1 where P = (1 + i)(B +C) = (1 + i)M. Here the following
polynomial approximation of P−1 is proposed:

P−1 = 1 − i

2

M−1 ≈ 1 − i

2

𝑠𝑚 (M) . (29)

The matrix polynomial 𝑠𝑚(M) must be an approximation of
the inverse of M, that is, 𝑠𝑚(M)M ≈ I, where 𝑠𝑚(𝑥) is a
polynomial with degree 𝑚. A measure of the quality of the
preconditioned matrix for a generic polynomial 𝑠(𝑥) is the
distance from the identity matrix:

Q𝜎 (𝑠) = ‖𝑠 (M)M − I‖2 = max
𝜆∈𝜎(M)

|1 − 𝜆𝑠 (𝜆)| , (30)

where 𝜎(M) = {𝜆1, . . . , 𝜆𝑛} is the spectrum of M. If, in
particular, the preconditioned matrix 𝑠𝑚(M)M is the identity
matrix thenQ𝜎(𝑠𝑚) = 0.Thus, the polynomial preconditioner
𝑠𝑚 should concentrate the eigenvalues of 𝑠𝑚(M)M around 1 in
order to be effective.

A preconditioner polynomial can be constructed by min-
imizing Q𝜎(𝑠) of (30) within the space Π𝑚 of polynomials of
degree atmost𝑚.This implies the knowledge of the spectrum
of the matrix M which is in general not available making
problem (30) unfeasible. The following approximation of
quality measure (30) is feasible:

Q[𝜖,1] (𝑠) = max
𝜆∈[𝜖,1]

|1 − 𝜆𝑠 (𝜆)| , 𝜎 (M) ⊂ [𝜖, 1] (31)

and it needs the knowledge of [𝜖, 1] and an interval for
𝜖 > 0, containing the spectrum ofM. The polynomial which
minimizesQ[𝜖,1](𝑠) for 𝑠 ∈ Π𝑚 is well known and is connected
to an appropriately scaled and shiftedChebyshev polynomial.
The construction of such solution is described in Section 5.1
and was previously considered by Ashby et al. [21, 22],
Johnson et al. [23], Freund [54], Saad [24], and Axelsson [19].
The computation ofQ[𝜖,1](𝑠)needs the estimation of a positive
lower bound of the minimum eigenvalue of M, which is, in
general, expensive or infeasible.The estimate 𝜖 = 0 cannot be
used because Q[0,1](𝑠) ≥ 1 for any polynomial 𝑠. A different
way to choose 𝜖 is analysed later in this section. Saad observed
that the use of Chebyshev polynomials with the conjugate
gradientmethod, that is, the polynomialwhichminimizes the
condition number of the preconditioned system, is in general
far frombeing the best polynomial preconditioner, that is, the

Mathematical Problems in Engineering 7

one thatminimizes theCG iterations [24]. Practice shows that
although nonoptimal, Chebyshev preconditioners perform
well inmany situations.The following integral average quality
measure proposed in [22–24, 55] is a feasible alternative to
(31):

Q (𝑠) = ∫

1

0

|1 − 𝜆𝑠 (𝜆)|

2 d𝜆, 𝜎 (M) ⊂ [0, 1] . (32)

The preconditioner polynomial 𝑠𝑚 proposed here is the
solution of minimization of quality measure (31) or (32):

𝑠𝑚 = argmin
𝑠∈Π
𝑚

Q[𝜖,1] (𝑠) , or 𝑠𝑚 = argmin
𝑠∈Π
𝑚

Q (𝑠) . (33)

Solution of problem (33) is detailed in the next sections.
The proposed solution to the first problem is by means of
the Chebyshev polynomials, while the solution of the second
problem is done with the Jacobi weight.

5.1. Chebyshev Polynomial Preconditioner. The solution of
minimization problem (33) with quality measure Q[𝜖,1](𝑠)
is well known and can be written in terms of Chebyshev
polynomials [21, 22]:

1 − 𝜆𝑠𝑚 (𝜆) =
𝑇

𝜖
𝑚+1 (𝜆)

𝑇

𝜖
𝑚+1 (0)

, (34)

where 𝑇𝜖𝑚+1(𝜆) is the (𝑚+ 1)th Chebyshev polynomial scaled
in the interval [𝜖, 1]. Polynomials𝑇𝜖𝑘(𝜆) satisfy the recurrence

𝑇

𝜖

0 (𝑥) = 1, 𝑇

𝜖

1 (𝑥) = 𝑎𝑥 + 𝑏,

𝑇

𝜖

𝑛+1 (𝑥) = 2 (𝑎𝑥 + 𝑏) 𝑇

𝜖

𝑛 (𝑥) − 𝑇
𝜖

𝑛−1 (𝑥) ,

(35)

where

𝑎 =

2

1 − 𝜖

, 𝑏 = −

1 + 𝜖

1 − 𝜖

. (36)

From (34), the preconditioner polynomial 𝑠𝑚(𝜆) becomes

𝑠𝑚 (𝜆) =
1

𝜆

(1 −

𝑇

𝜖
𝑚+1 (𝜆)

𝑇

𝜖
𝑚+1 (0)

) (37)

and from (35) it is possible to give a recursive definition for
𝑠𝑚(𝜆) too.

Lemma 10 (recurrence formula for preconditioner). Given
the polynomials 𝑞𝑛 defined by the recurrence

𝑞0 (𝑥) = 1, 𝑞1 (𝑥) = 𝑎0𝑥 + 𝑏0,

𝑞𝑛+1 (𝑥) = (𝑎𝑛𝑥 + 𝑏𝑛) 𝑞𝑛 (𝑥) + 𝑐𝑛𝑞𝑛−1 (𝑥) , 𝑛 = 1, 2, 3, . . .

(38)

then the polynomials 𝑟𝑛(𝑥) = 𝑞𝑛(𝑥)/𝑞𝑛(0) and 𝑠𝑛(𝑥) = (1 −

𝑟𝑛+1(𝑥))/𝑥 satisfy the recurrences

𝑟0 (𝑥) = 1, 𝑟1 (𝑥) = 1 − 𝑎

󸀠

0𝑥,

𝑟𝑛+1 (𝑥) = (𝑎

󸀠

𝑛𝑥 + 𝑏
󸀠

𝑛) 𝑟𝑛 (𝑥) + 𝑐
󸀠

𝑛𝑟𝑛−1 (𝑥) ,

𝑠0 (𝑥) = 𝑎

󸀠

0, 𝑠1 (𝑥) = 𝑎

󸀠

1𝑥 + 𝑏
󸀠

1,

𝑠𝑛 (𝑥) = (𝑎

󸀠

𝑛𝑥 + 𝑏
󸀠

𝑛) 𝑠𝑛−1 (𝑥) + 𝑐
󸀠

𝑛𝑠𝑛−2 (𝑥) − 𝑎
󸀠

𝑛,

(39)

where

𝑎

󸀠

0 = −

𝑎0

𝑏0

, 𝑎

󸀠

1 = −

𝑎0𝑎1

𝑏0𝑏1 + 𝑐1

, 𝑏

󸀠

1 = −

𝑎0𝑏1 + 𝑎1𝑏0

𝑏0𝑏1 + 𝑐1

,

𝑎

󸀠

𝑛 = 𝑎𝑛𝛾𝑛, 𝑏

󸀠

𝑛 = 𝑏𝑛𝛾𝑛, 𝑐

󸀠

𝑛 = 𝑐𝑛𝛾𝑛−1𝛾𝑛

(40)

and 𝛾𝑛 = 𝑞𝑛(0)/𝑞𝑛+1(0) satisfies the recurrence

𝛾1 =
𝑏0

𝑏0𝑏1 + 𝑐1

, 𝛾𝑛 =
1

𝑏𝑛 + 𝑐𝑛𝛾𝑛−1

. (41)

Proof. Take the ratio

𝑞𝑛+1 (𝑥)

𝑞𝑛+1 (0)
= (𝑎𝑛𝑥 + 𝑏𝑛)

𝑞𝑛 (𝑥)

𝑞𝑛+1 (0)
+ 𝑐𝑛

𝑞𝑛−1 (𝑥)

𝑞𝑛+1 (0)
,

𝑟𝑛+1 (𝑥) = (𝑎𝑛𝑥 + 𝑏𝑛) 𝑟𝑛 (𝑥)
𝑞𝑛 (0)

𝑞𝑛+1 (0)

+ 𝑐𝑛𝑟𝑛−1 (𝑥)
𝑞𝑛−1 (0)

𝑞𝑛 (0)

𝑞𝑛 (0)

𝑞𝑛+1 (0)
,

𝑟𝑛+1 (𝑥) = (𝑎𝑛𝑥 + 𝑏𝑛) 𝑟𝑛 (𝑥) 𝛾𝑛 + 𝑐𝑛𝑟𝑛−1 (𝑥) 𝛾𝑛𝛾𝑛−1,

(42)

and notice that 𝑟𝑛(0) = 1 for all 𝑛. Recurrence for 𝛾𝑛 is trivially
deduced. From 𝑟𝑛+1(𝑥) = 1 − 𝑥𝑠𝑛(𝑥) and by using (41),

𝑟𝑛+1 (𝑥) = (𝑎𝑛𝑥 + 𝑏𝑛) 𝑟𝑛 (𝑥) 𝛾𝑛 + 𝑐𝑛𝑟𝑛−1 (𝑥) 𝛾𝑛𝛾𝑛−1,

1 − 𝑥𝑠𝑛 (𝑥) = (𝑎𝑛𝑥 + 𝑏𝑛) (1 − 𝑥𝑠𝑛−1 (𝑥)) 𝛾𝑛

+ 𝑐𝑛 (1 − 𝑥𝑠𝑛−2 (𝑥)) 𝛾𝑛𝛾𝑛−1,

1 − 𝑥𝑠𝑛 (𝑥) = 𝑎𝑛𝑥 (1 − 𝑥𝑠𝑛−1 (𝑥)) 𝛾𝑛 + 𝑏𝑛𝛾𝑛

− 𝑏𝑛𝑥𝑠𝑛−1 (𝑥) 𝛾𝑛 + 𝑐𝑛𝛾𝑛𝛾𝑛−1

− 𝑐𝑛𝑥𝑠𝑛−2 (𝑥) 𝛾𝑛𝛾𝑛−1,

− 𝑥𝑠𝑛 (𝑥) = 𝑎𝑛𝑥𝛾𝑛 − 𝑎𝑛𝑥
2
𝑠𝑛−1 (𝑥) 𝛾𝑛 − 𝑏𝑛𝑥𝑠𝑛−1 (𝑥) 𝛾𝑛

− 𝑐𝑛𝑥𝑠𝑛−2 (𝑥) 𝛾𝑛𝛾𝑛−1,

−𝑥𝑠𝑛 (𝑥) = −𝑥𝛾𝑛 [(𝑎𝑛𝑥 + 𝑏𝑛) 𝑠𝑛−1 (𝑥) + 𝑐𝑛𝑠𝑛−2 (𝑥) 𝛾𝑛−1 − 𝑎𝑛] ,

(43)

dividing by −𝑥 recurrence (39) is retrieved. Polynomials 𝑠0
and 𝑠1 are trivially computed.

Using Lemma 10 the polynomial preconditioner (34)
satisfies the recurrence (39) with

𝑎

󸀠

0 =
2

1 + 𝜖

, 𝑎

󸀠

1 =
−8

𝜖

2
+ 6𝜖 + 1

, 𝑏

󸀠

1 = 8

1 + 𝜖

𝜖

2
+ 6𝜖 + 1

,

𝑎

󸀠

𝑛 =
4𝛾𝑛

1 − 𝜖

, 𝑏

󸀠

𝑛 = −2𝛾𝑛

1 + 𝜖

1 − 𝜖

, 𝑐

󸀠

𝑛 = −𝛾𝑛𝛾𝑛−1,

(44)

8 Mathematical Problems in Engineering

where 𝑐𝑛 = −1 is used and 𝛾𝑛 = 𝑇

𝜖
𝑛(0)/𝑇

𝜖
𝑛+1(0) is computed by

solving recurrence (35) for 𝑥 = 0; that is,

𝑇

𝜖

𝑛 (0) =
1

2

(𝑐

𝑛
+ 𝑐

−𝑛
) , 𝑐 =

√𝜖 − 1

√𝜖 + 1

,

󳨐⇒ 𝛾𝑛 =
𝑇

𝜖
𝑛 (0)

𝑇

𝜖
𝑛+1 (0)

=

𝑐

𝑛
+ 𝑐

−𝑛

𝑐

𝑛+1
+ 𝑐

−(𝑛+1)
.

(45)

Numerical stability of recurrence (44) is discussed in
Section 6. The estimation of 𝜖 is the complex task and some
authors perform it dynamically. As an alternative, the present
approach is to move the eigenvalues of the coefficient matrix
from the interval [𝜖, 1] to a stripe [1 − 𝛿, 1 + 𝛿], so that the
condition number remains bounded. The value of 𝜖 is not
determined from the estimate of the eigenvalues but from
the degree of the preconditioner polynomial and from the
amplitude of the stripe 𝛿. Once 𝛿 is fixed, the higher the
degree of the preconditioner, the lower the value of 𝜖, which
decreases to zero. Thus, if the degree of the preconditioner
is high enough, the eigenvalues are moved in the interval
[1−𝛿, 1+𝛿].The important fact is that even if the degree is not
high enough to move the complete spectrum, the majority of
the eigenvalues are moved in the desired stripe, improving
the performance of the conjugate gradient method. An idea
of this behaviour is showed in Figure 1 on the right. The end
of this section is devoted to the explicit expression of the
value of 𝜖 computed backwards from the value of 𝛿𝑛: once
the maximum condition number is fixed, it is possible to
increase the degree of the polynomial preconditioner so that
𝜖 decreases until the whole (or at least the most) spectrum of
the matrix is contained in the specified range.

In the interval [𝜖, 1], Chebyshev polynomial 𝑇𝜖𝑛(𝑥)/𝑇
𝜖
𝑛(0)

is bounded in the range [−𝛿, 𝛿]where 𝛿 = 𝑇

𝜖
𝑛(0)
−1
= 2/(𝑐

𝑛+1
+

𝑐

−(𝑛+1)
) and solving for 𝜖 gives

𝜖 = (

|𝑐| − 1

|𝑐| + 1

)

2

, |𝑐| = (

1 +
√
1 − 𝛿

2

𝛿

)

1/(𝑛+1)

.
(46)

5.2. Jacobi Polynomial Preconditioner. The solution of min-
imization problem (33) with quality measure Q(𝑠) is well
known and can be written in terms of Jacobi orthogonal
polynomials [24].

Definition 11. Given a nonnegative weight function 𝑤(𝜆) :

[0, 1] 󳨃→ R+ (see [23, 24, 56]) the scalar product ⟨⋅, ⋅⟩𝑤 and
the relative induced norm ‖ ⋅ ‖𝑤 are defined as

⟨𝑝, 𝑞⟩

𝑤
= ∫

1

0

𝑝 (𝜆) 𝑞 (𝜆)𝑤 (𝜆) d𝜆,

󵄩
󵄩
󵄩
󵄩

𝑝

󵄩
󵄩
󵄩
󵄩𝑤

= √⟨𝑝, 𝑝⟩

𝑤
=
√
∫

1

0

𝑝 (𝜆)

2
𝑤 (𝜆) d𝜆,

(47)

where 𝑝 and 𝑞 are continuous functions. The orthogonal
polynomials with respect to the scalar product ⟨⋅, ⋅⟩𝑤 are the
polynomials 𝑝𝑘(𝜆) which satisfy ⟨𝑝𝑘, 𝑝𝑗⟩𝑤 = 0 if 𝑘 ̸= 𝑗.

The orthogonal polynomials with respect to the weight

𝑤

𝛼,𝛽
(𝜆) = (1 − 𝜆)

𝛼
𝜆

𝛽
, for 𝛼, 𝛽 > −1, (48)

defined in the interval [0, 1], are the Jacobi polynomials and
they satisfy the recurrence (see [57]):

𝑝

𝛼,𝛽

0 (𝑥) = 1, 𝑝

𝛼,𝛽

1 (𝑥) = 𝑎

𝛼,𝛽

0 𝑥 + 𝑏

𝛼,𝛽

0 ,

𝑝

𝛼,𝛽

𝑛+1 (𝑥) = (𝑎

𝛼,𝛽

𝑛 𝑥 + 𝑏

𝛼,𝛽

𝑛) 𝑝

𝛼,𝛽

𝑛 (𝑥) + 𝑐

𝛼,𝛽

𝑛 𝑝

𝛼,𝛽

𝑛−1 (𝑥) ,

(49)

for

𝑎

𝛼,𝛽

𝑛 = 1,

𝑏

𝛼,𝛽

𝑛 = −

1

2

(1 +

𝛽

2
− 𝛼

2

(2𝑛 + 𝛼 + 𝛽) (2 (𝑛 + 1) + 𝛼 + 𝛽)

) ,

𝑐

𝛼,𝛽

𝑛 = −

𝑛 (𝑛 + 𝛼) (𝑛 + 𝛽) (𝑛 + 𝛼 + 𝛽)

(2𝑛 − 1 + 𝛼 + 𝛽) (2𝑛 + 1 + 𝛼 + 𝛽) (2𝑛 + 𝛼 + 𝛽)

2
.

(50)

The class of polynomials of the form 1 − 𝜆𝑠(𝜆) with 𝑠 ∈ Π𝑚−1
can be thought as polynomials 𝑟 ∈ Π𝑚+1 with 𝑟(0) = 1; thus,
the minimization problem (33) for Q(𝑠) can be recast to the
following constrained minimization for 𝑤(𝜆) ≡ 1:

𝑟𝑚+1 = argmin
𝑟∈Π
𝑚+1
,𝑟(0)=1

‖𝑟‖𝑤 . (51)

The preconditioner polynomial is 𝑠𝑚(𝜆) = 𝜆

−1
(1 − 𝑟𝑚+1(𝜆)).

Polynomial 𝑟𝑚+1(𝜆) is expanded by means of Jacobi orthogo-
nal polynomials with 𝛼 = 𝛽 = 0:

𝑟𝑚+1 (𝜆) =

𝑚+1

∑

𝑘=0

𝛼𝑘𝑝
0,0

𝑘 (𝜆) . (52)

Making use of the property of orthogonality with respect to
the scalar product, one has

󵄩
󵄩
󵄩
󵄩

𝑟𝑚+1
󵄩
󵄩
󵄩
󵄩

2

𝑤
=

𝑚+1

∑

𝑘=0

𝛼

2

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤
,

1 = 𝑟𝑚+1 (0) =

𝑚+1

∑

𝑘=0

𝛼𝑘𝑝
0,0

𝑘 (0) ,

(53)

and thus the constrained minimum problem (51) is recast as

minimize
𝑚+1

∑

𝑘=0

𝛼

2

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤
,

subject to
𝑚+1

∑

𝑘=0

𝛼𝑘𝑝
0,0

𝑘 (0) = 1.

(54)

Mathematical Problems in Engineering 9

0

0.5

1

0 0.25 0.5 0.75 1
0

0.5

1

0

20

40

60

0

20

40

60

0

0.5

1

1.5

0

0.5

1

1.5

(deg) (deg)

8.7 3.71 1.58 1.2 1.06 9.9 4.09 1.62 1.11 1.11

𝜆
s(
𝜆
)

s(
𝜆
)

𝜆

0 0.25 0.5 0.75 1
𝜆

𝜆s2(𝜆)

𝜆s4(𝜆)

𝜆s8(𝜆)

s2(𝜆)

s4(𝜆)

s8(𝜆)

1 − p0,1m+1(𝜆)/p
0,1
m+1(0) = 𝜆sm(𝜆)

s2(𝜆; 𝛿)

s4(𝜆; 𝛿)

s8(𝜆; 𝛿)

s2(𝜆; 𝛿)

s4(𝜆; 𝛿)

s8(𝜆; 𝛿)

𝜆
s(
𝜆
;𝛿
)

1 − T𝜖m+1(𝜆)/T
𝜖
m+1(0) = 𝜆sm(𝜆; 𝛿)

𝛿 = 0.1

𝛿 = 0.1

𝛿 = 0.05

0 0.25 0.5 0.75 1
𝜆

0 0.25 0.5 0.75 1
𝜆

1/𝜆 1/𝜆

s(
𝜆
;𝛼
)

q0 q2 q4 q8 q16 q32 q0 q2 q4 q8 q16 q32

𝜅 = 50 𝜅 = 50

1 − p0,1m+1(𝜆)/p
0,1
m+1(0)

𝜆
= sm(𝜆)

1 − T𝜖m+1(𝜆)/T
𝜖
m+1(0)

𝜆
= sm(𝜆; 𝛿)

Figure 1: The polynomials described in Lemma 10: in the first row the product 𝜆𝑠𝑚(𝜆) showing the approximation of the identity; in the
second row the explicit graph of the polynomial preconditioner compared with the function 1/𝜆; in the third row the performance of the
preconditioner in terms of the degree, condition number, and concentration of the eigenvalues of the coefficient matrix around 1. The left
column represents the Jacobi weight and the right column the Chebyshev polynomials.

Problem (54) is solved by using Lagrangemultiplier with first
order conditions resulting in

𝛼𝑘 =

𝑝𝑘 (0) /
󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤

∑

𝑚+1

𝑘=0 (𝑝
0,0

𝑘
(0)

2
/

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤
)

,

󳨐⇒ 𝑟𝑚+1 (𝜆) =

∑

𝑚+1

𝑘=0 (𝑝
0,0

𝑘
(0) 𝑝

0,0

𝑘
(𝜆) /

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤
)

∑

𝑚+1

𝑘=0 (𝑝
0,0

𝑘
(0)

2
/

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤
)

.

(55)

Remark 12. The solution (55) is only formal but barely
useful from a computational point of view, because it
requires computing explicitly the least squares polyno-
mial. In fact, it is well known that the evaluation of
a polynomial of high degree is a very unstable pro-
cess. To make solution (55) practical, it is mandatory to
obtain a stable recurrence formula that allows evaluating
polynomials even of very high degree, for example, 1000 or
more.

10 Mathematical Problems in Engineering

To find a recurrence for (55), it must be rewritten as
a ratio of orthogonal polynomials as for the Chebyshev
preconditioner (34). To this scope, some classical theorems
and definitions on orthogonal polynomials are here recalled
for convenience. Christoffel-Darboux formulas and Kernel
Polynomials, here recalled without proofs (see [55, 57]), are
used to build the recurrence.

Theorem 13 (Christoffel-Darboux formulas). Orthogonal
polynomials with respect to the scalar product ⟨⋅, ⋅⟩𝑤 share the
following identities:

𝑘

∑

𝑗=0

𝑝𝑗 (𝑥) 𝑝𝑗 (𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤

=

1

󵄩
󵄩
󵄩
󵄩

𝑝𝑘
󵄩
󵄩
󵄩
󵄩

2

𝑤

𝑝𝑘+1 (𝑥) 𝑝𝑘 (𝑦) − 𝑝𝑘+1 (𝑦) 𝑝𝑘 (𝑥)

𝑥 − 𝑦

.

(56)

Theorem 14 (Kernel Polynomials). Given orthogonal polyno-
mials 𝑝𝑘(𝑥) with respect to the scalar product ⟨⋅, ⋅⟩𝑤, that is,
with respect to weight function 𝑤(𝑥), then the polynomials

𝑞𝑘 (𝑥) =
(𝑝𝑘+1 (𝑥) 𝑝𝑘 (0) − 𝑝𝑘+1 (0) 𝑝𝑘 (𝑥))

𝑥

(57)

are orthogonal polynomials with respect to the scalar product
[⋅, ⋅]𝑤 defined as [𝑝, 𝑞]𝑤 = ∫

1

0
𝑝(𝑥)𝑞(𝑥)𝑥𝑤(𝑥)dx, that is, with

respect to the weight function 𝑥𝑤(𝑥). Moreover 𝑞0(𝑥) = 1.

With the formulas of Christoffel-Darboux (56) and𝑥 = 𝜆,
𝑦 = 0, it is possible to rewrite (55) as

𝑟𝑚+1 (𝜆) =
1

𝐶

𝑝

0,0
𝑚+2 (𝜆) 𝑝

0,0
𝑚+1 (0) − 𝑝

0,0
𝑚+2 (0) 𝑝

0,0
𝑚+1 (𝜆)

𝜆

,

𝐶 =

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑚+1

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤

𝑚+1

∑

𝑘=0

𝑝

0,0

𝑘
(0)

2

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

0,0

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑤

.

(58)

Using the Kernel Polynomials of this last theorem, expression
(58) becomes

𝑟𝑚+1 (𝜆) =
𝑝

0,1
𝑚+1 (𝜆)

𝑝

0,1
𝑚+1 (0)

, (59)

where 𝑝0,1
𝑘
(𝑥) are orthogonal polynomials with respect to the

weight𝑤(𝜆) = 𝜆. In fact, the Kernel Polynomials with respect
to 𝜆𝑤𝛼,𝛽(𝜆) = 𝑤

𝛼,𝛽+1
(𝜆) satisfy 𝑞𝛼,𝛽(𝑥) = 𝑝

𝛼,𝛽+1
(𝑥).

Preconditioner polynomial can be computed recursively
using Lemma 10, where coefficients 𝑎󸀠𝑛, 𝑏

󸀠
𝑛, 𝑐
󸀠
𝑛, and 𝛾𝑛 are

computed from 𝑎

0,1
𝑛 , 𝑏0,1𝑛 , and 𝑐0,1𝑛 . Given

𝑎

0,1

𝑛 = 1, 𝑏

0,1

𝑛 = −

1

2

(1 +

1

(2𝑛 + 1) (2𝑛 + 3)

) ,

𝑐

0,1

𝑛 = −

𝑛 (𝑛 + 1)

4 (2𝑛 + 1)

2
,

(60)

t1 ← 𝑎

󸀠
0v;

y ← 𝑎

󸀠
1Mv + 𝑏󸀠1v;

for 𝑛 = 2, 3, . . . , 𝑚 do
t0 ← t1;
t1 ← y;
y ← 𝑎

󸀠
𝑛(Mt1 − v) + 𝑏󸀠𝑛t1 + 𝑐

󸀠
𝑛t0;

end for
return y;

Algorithm 4: Application of preconditioner 𝑠𝑚(M) to a vector v.

the values of 𝑎󸀠𝑛, 𝑏
󸀠
𝑛, 𝑐
󸀠
𝑛, and 𝛾𝑛 from Lemma 10 become

𝑎

󸀠

0 =
3

2

, 𝑎

󸀠

1 = −

10

3

, 𝑏

󸀠

1 = 4,

𝛾𝑛 = 𝑎

󸀠

𝑛 = −4 +

2 (3𝑛 + 5)

(𝑛 + 2)

2
, 𝑏

󸀠

𝑛 = 2 − Δ,

𝑐

󸀠

𝑛 = −1 + Δ, Δ =

2 (3𝑛

2
+ 6𝑛 + 2)

(2𝑛 + 1) (𝑛 + 2)

2
.

(61)

The only difficulty of the previous coefficients computation
lies in the recursive solution of 𝛾𝑛, which is here omitted for
conciseness but that is a linear three-term recurrence with
polynomial coefficients. Notice that Δ → 0; thus the limit
value of the above coefficients is evident.

5.3. Recurrence Formula for the Preconditioner. Looking at
Algorithms 2 and 3, the polynomial preconditioner 𝑠𝑚(M) is
applied to a vector, that is, 𝑠𝑚(M)k. Thus, to avoid matrix-
matrix multiplication, by defining k(𝑘) = 𝑠𝑘(M)k and using
Lemma 10 with (61), the following recurrence is obtained for
𝑠𝑚(M)k = k(𝑚):

k(0) = 𝑎

󸀠

0k, k(1) = 𝑎

󸀠

1Mk + 𝑏󸀠1k,

k(𝑛) = 𝑎

󸀠

𝑛 (Mk(𝑛−1) − k) + 𝑏󸀠𝑛k
(𝑛−1)

+ 𝑐

󸀠

𝑛k
(𝑛−2)

,

(62)

where 𝑛 = 2, 3, . . . , 𝑚 and recurrence (62) is the proposed
preconditioner with coefficients given by (44) for Chebyshev
and (61) for Jacobi the polynomials. Equation (62) yields
Algorithm 4.

6. Numerical Stability

Algorithm 4, that is, the application of preconditioner 𝑠𝑚(M)

given by (62) to a vector k, also taking into account rounding
errors, results in

w(0) = 𝑎

󸀠

0k + 󰜚
(0)
, w(1) = 𝑎

󸀠

1Mk + 𝑏󸀠1k + 󰜚
(1)
,

w(𝑛) = 𝑎

󸀠

𝑛 (Mw(𝑛−1) − k) + 𝑏󸀠𝑛w
(𝑛−1)

+ 𝑐

󸀠

𝑛w
(𝑛−2)

+ 󰜚
(𝑛)
,

(63)

Mathematical Problems in Engineering 11

where ‖󰜚
(𝑘)
‖∞ ≤ 𝛿 are the errors due to floating point

operations with 𝛿 as an upper bound of such errors. The
cumulative error e(𝑘) = w(𝑘) − k(𝑘) satisfies the linear
recurrence

e(0) = 󰜚(0), e(1) = 󰜚(1),

e(𝑛) = 𝑎

󸀠

𝑛Me(𝑛−1) + 𝑏󸀠𝑛e
(𝑛−1)

+ 𝑐

󸀠

𝑛e
(𝑛−2)

+ 󰜚
(𝑛)
.

(64)

The next definitions introduce the concept of generalized and
joint spectral radius needed for the proof of the theorem of
the matrix bound; they can be found in [58].

Definition 15. A matrix set Σ = {A𝑘 ∈ R𝑛×𝑛 | 𝑘 ∈ N} is
bounded if there is a constant 𝐶 such that ‖A‖ ≤ 𝐶 for all
A ∈ Σ. An invariant subspace 𝑉 for Σ is a vector space such
that A𝑉 ⊆ 𝑉 for all A ∈ Σ. The set Σ is irreducible if the only
invariant subspace is {0} or R𝑛.

Definition 16. The generalized spectral radius 󰜚(Σ) and the
joint spectral radius 󰜚(Σ, ‖ ⋅ ‖) of any set of matrices Σ are
defined as

󰜚 (Σ) = lim sup
𝑘→∞

(󰜚𝑘 (Σ))
1/𝑘

,

󰜚𝑘 (Σ) = sup{󰜚(
𝑘

∏

𝑖=1

A𝑖) | A𝑖 ∈ Σ} ,

󰜚 (Σ, ‖⋅‖) = lim sup
𝑘→∞

(󰜚𝑘 (Σ, ‖⋅‖))
1/𝑘

,

󰜚𝑘 (Σ, ‖⋅‖) = sup{
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑘

∏

𝑖=1

A𝑖
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

| A𝑖 ∈ Σ} .

(65)

Theorem 17. Let Σ be a bounded and irreducible set of
matrices with 󰜚(Σ) > 0; then there is a constant 𝐶 such that

󵄩
󵄩
󵄩
󵄩

A1A2 ⋅ ⋅ ⋅A𝑘
󵄩
󵄩
󵄩
󵄩

≤ 𝐶󰜚 (Σ)

𝑘
, ∀A𝑗 ∈ Σ (66)

for all 𝑘 > 0.

Proof. It is Theorem 2.1 by [58] with a slight modification to
match the present case.

Theorem 18. Recurrence (64) satisfies
󵄩
󵄩
󵄩
󵄩
󵄩

e(𝑛)󵄩󵄩󵄩
󵄩
󵄩∞

≤ (𝐶𝛿𝑁) 𝑛, (67)

where 𝑁 is the dimension of the linear system, 𝛿 is the
amplitude of the stripe for the eigenvalues, and 𝐶 is an
unknown constant coming from the norm inequalities which
is found experimentally to be small.

Proof. The matrix M = B + C in (64), by Assumption 9,
is SPD with eigenvalues in (0, 1]. Thus M = T𝑇ΛT, with
T orthogonal matrix, that is, T𝑇T = I, and Λ diagonal.
Multiplying on the left the recurrence (64) byT, the following
error estimate is obtained:

Te(0) = T󰜚(0), Te(1) = T󰜚(1),

Te(𝑛) = 𝑎

󸀠

𝑛ΛTe
(𝑛−1)

+ 𝑏

󸀠

𝑛Te
(𝑛−1)

+ 𝑐

󸀠

𝑛𝛾𝑛−1Te
(𝑛−2)

+ T󰜚(𝑛).
(68)

Focusing on 𝑗th component of the transformed error, 𝑓(𝑛) =
(Te(𝑛))𝑗 and 𝜂(𝑛) = (T󰜚(𝑛))𝑗, a scalar recurrence is obtained:

𝑓

(0)
= 𝜂

(0)
, 𝑓

(1)
= 𝜂

(1)
,

𝑓

(𝑛)
= (𝑎

󸀠

𝑛𝜆𝑗 + 𝑏
󸀠

𝑛) 𝑓
(𝑛−1)

+ 𝑐

󸀠

𝑛𝑓
(𝑛−2)

+ 𝜂

(𝑛)
.

(69)

Recurrence (69) is restated in matrix form as

f𝑛 = A𝑛f𝑛−1 + b𝑛, A𝑛 = (

𝑎

󸀠
𝑛𝜆𝑗 + 𝑏

󸀠
𝑛 𝑐

󸀠
𝑛

1 0

) ,

b𝑛 = (

𝜂

(𝑛)

0

) , f𝑛 = (

𝑓

(𝑛)

𝑓

(𝑛−1)) ,

(70)

with initial data f𝑇1 = (𝜂

(1)
, 𝜂

(0)
). Notice that 𝜂(𝑛) is bounded

by

󵄨
󵄨
󵄨
󵄨
󵄨

𝜂

(𝑛)󵄨󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩

T󰜚(𝑛)󵄩󵄩󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩

T󰜚(𝑛)󵄩󵄩󵄩
󵄩
󵄩2

=

󵄩
󵄩
󵄩
󵄩
󵄩

󰜚
(𝑛)󵄩󵄩
󵄩
󵄩
󵄩2
≤
√
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩

󰜚
(𝑛)󵄩󵄩
󵄩
󵄩
󵄩∞

≤ 𝛿
√
𝑁

(71)

and thus, ‖f1‖∞ ≤ 𝛿
√
𝑁 and ‖b𝑛‖∞ ≤ 𝛿

√
𝑁. From (70) it

follows that

f𝑛 = A𝑛A𝑛−1 ⋅ ⋅ ⋅A2f1 +
𝑛

∑

𝑘=2

A𝑛A𝑛−1 ⋅ ⋅ ⋅A𝑛−𝑘+1b𝑘. (72)

The set Σ = {A𝑖 | 𝑖 = 1, . . . ,∞} is bounded and
irreducible; each matrix has spectral radius strictly less than 1
(see Lemma 19 for a proof); therefore the joint spectral radius
is less than 1. From (72), with Theorem 17 using the infinity
norm,

󵄨
󵄨
󵄨
󵄨
󵄨

𝑓

(𝑛)󵄨󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩

f𝑛
󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩

A𝑛A𝑛−1 ⋅ ⋅ ⋅A2
󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩

f1
󵄩
󵄩
󵄩
󵄩∞

+

𝑛

∑

𝑘=2

󵄩
󵄩
󵄩
󵄩

A𝑛A𝑛−1 ⋅ ⋅ ⋅A𝑛−𝑘+1
󵄩
󵄩
󵄩
󵄩∞

󵄩
󵄩
󵄩
󵄩

b𝑘
󵄩
󵄩
󵄩
󵄩∞

,

≤ 𝐶󰜚 (Σ)

𝑛−2
𝛿
√
𝑁 + 𝐶

𝑛

∑

𝑘=2

󰜚 (Σ)

𝑘
𝛿
√
𝑁

≤ 𝐶𝛿
√
𝑁𝑛,

(73)

and, because of 𝑓(𝑛) = (Te(𝑛))𝑗, it follows that ‖Te(𝑛)‖∞ ≤

𝐶𝛿
√
𝑁𝑛. A bound of the term e(𝑛) is done as

󵄩
󵄩
󵄩
󵄩
󵄩

e(𝑛)󵄩󵄩󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩

e(𝑛)󵄩󵄩󵄩
󵄩
󵄩2
=

󵄩
󵄩
󵄩
󵄩
󵄩

Te(𝑛)󵄩󵄩󵄩
󵄩
󵄩2
≤
√
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩

Te(𝑛)󵄩󵄩󵄩
󵄩
󵄩∞

≤ 𝐶𝛿𝑁𝑛. (74)

This shows that the error grows at most linearly.

The above relation shows that the recurrence is at worst
linearly unstable; that is, the error grows at most linearly.
The existence is proved in the works of Rota and Strang [59]
where the concept of joint spectral radius is introduced. The
determination of 𝐶 is not possible but practice reveals that it
is small. In conclusion it is possible to employ even a very high
degree polynomial preconditioner with a stable computation.

12 Mathematical Problems in Engineering

Lemma 19. Given 𝑎󸀠𝑛, 𝑏
󸀠
𝑛, 𝑐
󸀠
𝑛 from (44) or (61), respectively, for

the Chebyshev and the Jacobi preconditioner, then the roots
𝑧1 and 𝑧2 of the characteristic polynomial of homogeneous
recurrence (69), that is,

𝑧

2
− (𝑎

󸀠

𝑛𝜆 + 𝑏
󸀠

𝑛) 𝑧 − 𝑐
󸀠

𝑛, (75)

satisfy |𝑧1| < 1 and |𝑧2| < 1 for all 𝑛 > 0 and 0 < 𝜆 ≤ 1.

Proof. Consider first the coefficients for the Jacobi polynomi-
als defined in (61). If the roots are complex, then theymust be
conjugate; thus 𝑧1 = 𝑧 and 𝑧2 = 𝑧, because the coefficients of
the polynomial are real. In that case, the constant term of the
polynomial is equal to the square of the modulus of the roots,
𝑧𝑧 = |𝑧|

2
= −𝑐

󸀠
𝑛; thus it is easy to see that |𝑧| < 1 for all 𝑛 > 0.

Suppose now that the two roots 𝑧1 and 𝑧2 are real; multiplying
the characteristic polynomial by (𝑛 + 2)2(2𝑛 + 1), yields, after
some manipulation,

𝑧1 =
𝐴 − 𝐵𝜆 +

√
𝐵

2
𝜆

2
− 2𝐴𝐵𝜆 + 𝐶

𝐷

,

𝑧2 =
𝐴 − 𝐵𝜆 −

√
𝐵

2
𝜆

2
− 2𝐴𝐵𝜆 + 𝐶

𝐷

(76)

for

𝐴 = 2𝑛

3
+ 6𝑛

2
+ 6𝑛 + 2, 𝐵 = 4𝑛

3
+ 12𝑛

2
+ 11𝑛 + 3,

𝐶 = (3𝑛

2
+ 6𝑛 + 2)

2
, 𝐷 = 2𝑛

3
+ 9𝑛

2
+ 12𝑛 + 4,

(77)

with 𝐴, 𝐵, 𝐶, and 𝐷 strictly positive for all 𝑛 ≥ 0. The
discriminant Δ(𝜆) of the equation is Δ(𝜆) = 𝐵

2
𝜆

2
− 2𝐴𝐵𝜆 +

𝐶 and represents a convex parabola because 𝐵

2
> 0. Its

minimum is obtained for 𝜆 = 𝐴/𝐵 ∈ (0, 1), which gives
Δ(𝐴/𝐵) < 0 and so complex roots, but this case was already
considered. Hence we can set Δmin = 0. The maximum
of Δ(𝜆) is achieved at one of the extrema of the interval
of definition of 𝜆. A quick calculation shows that Δ(𝜆) is
maximum for 𝜆 = 0, yielding a value of Δmax = 𝐶. Using
Δmax and Δmin it is possible to bound the roots 𝑧1 and 𝑧2:

𝑧1 <
𝐴 + √Δmax

𝐷

=

2𝑛

3
+ 6𝑛

2
+ 6𝑛 + 2 + (3𝑛

2
+ 6𝑛 + 2)

2𝑛

3
+ 9𝑛

2
+ 12𝑛 + 4

= 1,

𝑧1 ≥
𝐴 − 𝐵 + √Δmin

𝐷

= −

2𝑛

3
+ 6𝑛

2
+ 5𝑛 + 1

2𝑛

3
+ 9𝑛

2
+ 12𝑛 + 4

> −1,

𝑧2 <
𝐴 − √Δmin

𝐷

=

2𝑛

3
+ 6𝑛

2
+ 6𝑛 + 2

2𝑛

3
+ 9𝑛

2
+ 12𝑛 + 4

< 1,

𝑧2 ≥
𝐴 − 𝐵 − √Δmax

𝐷

= −

2𝑛

3
+ 9𝑛

2
+ 11𝑛 + 3

2𝑛

3
+ 9𝑛

2
+ 12𝑛 + 4

> −1.

(78)

The previous inequalities prove the lemma for the Jacobi
preconditioner. Now consider the case of the coefficients

of the Chebyshev polynomials defined in (44). Recall the
expression for 𝑐 = (√𝜖 − 1)/(√𝜖 + 1), and notice that, for
𝜖 ∈ (0, 1), 𝑐 is bounded in −1 < 𝑐 < 0, so that

𝜔𝑛 := 𝑐

𝑛
+ 𝑐

−𝑛 (79)

is positive for even 𝑛 and negative for odd 𝑛; moreover, |𝜔𝑛| =
|𝑐

𝑛
+𝑐

−𝑛
| ≥ 2 is monotone increasing for 𝑛 = 1, 2, 3, In the

case of complex roots, it was already shown that 𝑧𝑧 = |𝑧|

2
=

−𝑐

󸀠
𝑛, with

0 ≤ −𝑐

󸀠

𝑛 =
𝜔𝑛−1

𝜔𝑛+1

< 1, 𝜖 ∈ (0, 1) . (80)

In the rest of the proof it is useful to consider also the ratio
−1 < 𝜔𝑛/𝜔𝑛+1 < 0, for 𝑐 ∈ (−1, 0), that corresponds to
𝜖 ∈ (0, 1). The coefficients of (44), observing that 𝜖 = (𝜔1 +

2)/(𝜔1 − 2), are simplified in

𝑎

󸀠

𝑛 =
4𝜔𝑛

(1 − 𝜖) 𝜔𝑛+1

= −

𝜔𝑛

𝜔𝑛+1

(𝜔1 − 2) ,

𝑏

󸀠

𝑛 =
−2 (1 + 𝜖) 𝜔𝑛

(1 − 𝜖) 𝜔𝑛+1

=

𝜔𝑛𝜔1

𝜔𝑛+1

, 𝑐

󸀠

𝑛 = −

𝜔𝑛−1

𝜔𝑛+1

.

(81)

Polynomial (75) is rewritten as

𝑧

2
+

𝜔𝑛

𝜔𝑛+1

(𝜆 (𝜔1 − 2) − 𝜔1) 𝑧 +
𝜔𝑛−1

𝜔𝑛+1

(82)

and its roots are (using 𝜔1𝜔𝑛 = 𝜔𝑛−1 + 𝜔𝑛+1)

𝑧1,2 (𝜆) =
𝜔1𝜔𝑛

2𝜔𝑛+1

−

𝜔𝑛

𝜔𝑛+1

𝜔1 − 2

2

[𝜆 ± √Δ (𝜆)] ,

Δ (𝜆) = 𝜆

2
−

2𝜔1

𝜔1 − 2
𝜆 +

(𝜔𝑛−1 − 𝜔𝑛+1)
2

𝜔

2
𝑛 (𝜔1 − 2)

2
.

(83)

Looking at the discriminant Δ(𝜆), the minimum of the
associated convex parabola is for 𝜆 = 𝜔1/(𝜔1 − 2) ∈ (1/2, 1).
The corresponding value is

Δ(

𝜔1

𝜔1 − 2
) = −4

𝜔𝑛−1𝜔𝑛+1

𝜔

2
𝑛 (𝜔1 − 2)

2
< 0. (84)

The value at the right extremum is also negative:

Δ (1) = 4

𝜔

2
𝑛 − 𝜔𝑛−1𝜔𝑛+1

𝜔

2
𝑛 (𝜔1 − 2)

2
< 0, (85)

and in fact

𝜔

2

𝑛 − 𝜔𝑛−1𝜔𝑛+1 = 2 − 𝑐

−2
− 𝑐

2
= −

(𝑐 − 1)

2
(𝑐 + 1)

2

𝑐

2
< 0.

(86)

For 𝜆 = 0, with some manipulations, the roots of (82) are

𝑧1 (0) = 1, 𝑧2 (0) =
𝜔𝑛−1

𝜔𝑛+1

< 1. (87)

Mathematical Problems in Engineering 13

Table 1: Numerical results for COCG, COCR, and QMR preconditioned on the basis of the complex matrix A with LU decomposition, with
incomplete LU (ILU) andwith incomplete LUwith threshold 10−5 (ILU0).The reported numbers represent the iterations of the corresponding
solver with the specified preconditioner.The dash indicates that it was not feasible to compute a particular test. The column “preconditioner”
shows the time required to assemble the preconditioner. The stopping tolerance was 10−8. The time elapsed in the computation is expressed
in seconds.

Test case Preconditioner COCG COCR QMR
LU ILU0 ILU ILU0 ILU ILU0 ILU No Preco ILU0 ILU

T5k
Iter. 86 9 86 9 85 8
Time 0.59 0.027 1.28 0.21 1.34 0.22 1.34 — 0.65 1.73

T16k
Iter. 65 6 65 6 399 64 5
Time 13.9 0.08 315 0.44 317 0.44 317 1.75 1.35 337

T80k
Iter. 204 205 200
Time 21.8 0.26 49.6 — 73 — 74 — — 266

T150k
Iter. 661 24 634 24 642 23
Time 13.0 0.058 152 12.7 156 13.1 156 — 40.4 174

T500k
Iter.
Time — 0.79 — — — — — — — —

S13k
Iter. 1253 1258 2152 1307
Time — 0.032 6.15 — 36.5 — 36.7 — 29.4 333

S32k
Iter.
Time — 0.082 28 — — — — — — —

S500k
Iter.
Time — — — — — — — — — —

Moreover, Δ(𝜖) = Δ(1); thus there exists 0 < 𝜆

⋆
< 𝜖 such

that Δ(𝜆⋆) = 0. Thus for 𝜆 ∈ [𝜆

⋆
, 1] the roots are complex

conjugate and with modulus less than 1. For 𝜆 ∈ [0, 𝜆

⋆
],

where the roots 𝑧1,2(𝜆) are real, 𝑧1(𝜆) and its derivative satisfy

𝑧1 (𝜆) =
𝜔1𝜔𝑛

2𝜔𝑛+1

+

𝜔𝑛

𝜔𝑛+1

𝜔1 − 2

2

[√Δ (𝜆) − 𝜆] ,

𝑧

󸀠

1 (𝜆) =
𝜔𝑛

𝜔𝑛+1

𝜔1 − 2

2

[

Δ

󸀠
(𝜆)

√Δ (𝜆)

− 1] ,

Δ

󸀠
(𝜆) = 2𝜆 −

2𝜔1

𝜔1 − 2
,

(88)

and thus for 𝜆 = 0 we have 𝑧

󸀠
1(0) < 0. Hence in a

neighbourhood of 𝜆 = 0, −1 < 𝑧1,2(𝜆) < 1, and for 𝜆 ∈ (0, 𝜆⋆]
there are no roots equal to 1 or 0; thus the roots of (82) are

bounded in (0, 1). In fact, by contradiction, let 𝑧 = 1 be a
root; then by (82)

1 +

𝜔𝑛

𝜔𝑛+1

(𝜆 (𝜔1 − 2) − 𝜔1) +
𝜔𝑛−1

𝜔𝑛+1

= 0,

󳨐⇒ 𝜆 = 0.

(89)

Moreover 𝑧 = 0 is never a root of (82).
Thus the roots are bounded in the interval (−1, 1) for 𝑛 ≥

0 and 𝜆 ∈ (0, 1].

7. Numerical Tests

In this section a group of tests is proposed for the solution
of a complex linear system of the form (1); that is, (B +

iC)(y + iz) = c + id, where B and C are semi-SPD with
B+C SPD.The solvers used are COCG (Algorithm 2), COCR
(Algorithm 3), and the standard Matlab’s QMR.The first two
are tested together with different preconditioners such as
ILU/ILU0 and with the present polynomial preconditioners.
As a comparison QMR is also added, with and without
preconditioning. When feasible, the direct LU factorization

14 Mathematical Problems in Engineering

Table 2: Numerical results for COCG and COCR preconditioned on the basis of the matrix (B + C) with complete Cholesky decomposition
(LL𝑇), with incompleteCholesky (IC), andwith incompleteCholeskywith threshold 10−5 (IC0).The reported numbers represent the iterations
of the corresponding solver with the specified preconditioner. The dash indicates that it was not feasible to compute a particular test. The
stopping tolerance was 10−8. The column “preconditioner” shows the time required to assemble the preconditioner. The time elapsed in the
computation is expressed in seconds.

Test case Preconditioner COCG-MHSS COCR-MHSS
LL𝑇 IC0 IC LL𝑇 IC0 IC LL𝑇 IC0 IC

T5k
Iter. 25 148 25 25 148 25
Time 0.21 0.01 0.25 0.51 0.3 0.48 0.52 0.32 0.42

T16k
Iter. 24 78 24 24 75 24
Time 25 0.031 22 34.7 0.48 23.4 36 0.64 23.9

T80k
Iter. 22 22
Time 5.3 — — 11 — — 11.2 — —

T150k
Iter. 638 32 634 32
Time — 0.03 3.0 — 11 5.6 — 11.2 5.8

T500k
Iter.
Time — — — — — — — — —

S13k
Iter. 5 5
Time 0.66 — — 0.88 — — 0.85 — —

S32k
Iter.
Time — — — — — — — — —

S500k
Iter.
Time — — — — — — — — —

is used; then two variants are proposed, an incomplete LU
and an ILU with threshold. More in detail, Table 1 presents
the preconditioners:

(i) LU, the complete LU decomposition, for the matrix
A = B + iC,

(ii) ILU0, the incomplete ILU(0), for the matrix A = B +

iC, the threshold used is 10−5,
(iii) ILU, the incomplete ILU(0), for thematrixA = B+iC,

and the use of the previous preconditioners with COCG,
COCR, and QMR:

(i) COCG-ILU0 and COCG-ILU, COCG solver precon-
ditioned with ILU0 and ILU,

(ii) COCR-ILU0 and COCR-ILU, COCR solver precon-
ditioned with ILU0 and ILU,

(iii) QMR, standardQMR implementation ofMatlab,with
no preconditioning,

(iv) QMR-ILU0 and QMR-ILU, standard QMR imple-
mentation of Matlab, with ILU0 and ILU precondi-
tioning.

Table 2 presents the results of COCG and COCR iterative
solver with the preconditioner MHSS approximated with

(i) COCG-MHSS-LL𝑇, COCG-MHSS-IC0, and COCG-
MHSS-IC the complete and incomplete Cholesky
decompositions for the preconditioner P defined in
(16), threshold used for IC being 10−5;

(ii) COCR-MHSS-LL𝑇, COCR-MHSS-IC0, and COCR-
MHSS-IC the complete and incomplete Cholesky
decompositions for the preconditioner P defined in
(16), threshold used for IC being 10−5.

Table 3 presents the results of COCG and COCR iterative
solver with the preconditioner of Section 5:

(i) COCG-MHSS-J, COCG-MHSS-C the Jacobi and
Chebyshev polynomial approximation of MHSS used
with COCG iterative method;

(ii) COCR-MHSS-J, COCR-MHSS-C the Jacobi and
Chebyshev polynomial approximation of MHSS used
with COCR iterative method;

Mathematical Problems in Engineering 15

Table 3: Numerical results for COCG and COCR, the reported numbers represents the iterations of the corresponding solver with the
specified preconditioner. The dash indicates that it was not feasible to compute a particular test, while the letters “—” mean “not converged”
after 10 000 iterations. The value of 𝛿 used in the Chebyshev preconditioner was 0.2 while the stopping tolerance was 10−8. The time elapsed
in the computation is expressed in seconds.

Test case Degree of MHSS-J Degree of MHSS-C
10 50 100 500 1000 10 50 100 500 1000

COCG
T5k

Iter. 127 32 26 25 25 111 32 32 31 31
Time 0.9 1.0 1.6 7.4 15.0 0.8 1.0 1.9 9.2 18.4

T16k
Iter. 31 24 24 23 23 31 29 28 29 30
Time 0.6 1.9 3.6 16.6 32.9 0.6 2.3 4.2 21.1 43.2

T80k
Iter. 4765 657 298 55 31 3904 596 251 52 33
Time 275.6 162.8 145.4 130.4 146.4 225.8 148.0 121.6 123.8 156.6

T150k
Iter. 323 81 42 19 19 277 65 36 23 23
Time 14.2 15.1 15.5 33.9 67.4 12.9 12.4 13.3 41.1 81.9

T500k
Iter. 4928 829 479 91 47 4805 929 461 87 46
Time 1665 1215 1374 1378 1393 1763 1333 1343 1246 1380

S13k
Iter. 4681 1123 591 80 38 4016 1199 613 93 57
Time 29.6 29.1 30.1 19.8 23.3 25.6 33.2 32.0 24.1 28.6

S32k
Iter. 4665 1102 686 106 49 4012 1156 612 102 64
Time 77.1 91.3 96.6 64.8 56.8 65.1 77.3 80.6 66.9 81.3

S500k
Iter. 4328 2165 394 107 4179 2359 390 185
Time — 5366 5232 4757 2646 — 5250 5715 4629 4637

COCR
T5k

Iter. 124 32 26 25 25 109 32 32 32 32
Time 0.9 1.0 1.6 7.5 14.8 0.8 1.0 1.9 9.5 18.1

T16k
Iter. 31 24 23 23 23 31 29 28 29 30
Time 0.6 1.9 3.6 16.6 32.9 0.6 2.2 4.2 21.0 43.2

T80k
Iter. 3591 533 226 52 32 2947 413 223 49 34
Time 209.5 132.1 109.3 123.4 151.1 172.0 102.6 107.7 116.1 160.2

T150k
Iter. 303 79 42 19 19 267 62 36 23 23
Time 14.2 15.1 15.5 34.0 67.4 13.0 12.4 13.3 41.1 81.9

T500k
Iter. 4066 828 407 80 41 4067 807 397 88 46
Time 1410 1204 1182 1208 1218 1471 1172 1174 1330 1357

S13k
Iter. 3683 896 481 64 38 3153 742 452 93 53
Time 24.7 23.8 24.2 16.1 20.5 20.8 20.3 20.6 24.2 27.8

S32k
Iter. 3904 918 487 76 43 3352 756 408 90 61
Time 64.1 62.6 65.27 48.1 58.0 54.6 52.8 56.9 57.2 74.6

S500k
Iter. 8504 2025 1017 191 75 7203 1634 856 216 102
Time 2567 2525 2473 2386 1909 2393 2058 2083 2572 2546

16 Mathematical Problems in Engineering

Table 4

Name Number of rows NNZ
s1rmq4m1 5 489 262 411
s3rmt3m3 5 357 207 123
Pres Poisson 14 822 715 804
Dubcova1 16 129 253 009
nasasrb 54 870 2 677 324
apache1 80 800 542 184
denormal 89 400 726 674
G2 circuit 150 102 726 674
pwtk 217 918 11 524 432
parabolic fem 525 825 3 674 625

Table 5

Test name Matrix pairing Number of rows NNZ
T5k (s1rmq4m1, s3rmt3m3) 5 489 399 907
T16k (Pres Poisson, Dubcova1) 16 129 925 819
T80k (apache1, nasasrb) 80 800 3 072 500
T150k (G2 circuit, denormal) 150 102 1 616 970
T500k (pwtk, parabolic fem) 525 825 14 810 591

The Incomplete LU decomposition was computed with the
standard Matlab commandilu with parameters ’type’ =
’crout’, ’droptol=1e-5’; the ILU0 was computedilu with
parameters ’type’ = ’nofill’; for the Cholesky decom-
position was usedichol with parameters ’type’ = ’ict’,
’droptol=1e-5’; for the IC0 the parameter used was
’type’=’nofill’. The degrees used for the polynomial pre-
conditioner are 10, 50, 100, 500, and 1000. Due to the lack
of complex symmetric matrices with SPD real and imaginary
part, it was decided to combine two real SPD matrices of not
too far dimension (eventually padding with zeros to match
the size of the biggest one). The real SPD matrices used are
summarized in Table 4 and can be found on theNIST “Matrix
Market” Sparse Matrix Collection [60] or on University
of Florida Sparse Matrix Collection [61]. As usual “NNZ”
means number of nonzero elements and it is understood that
the matrices are square; hence only the number of rows is
reported.

These matrices are used paired where the first matrix
of the pair corresponds to the real part and the second to
the imaginary part. If the dimensions disagree, the smallest
matrix is padded with zero rows and columns up to the size
of the biggest one. The pairing of the matrices with the name
of the corresponding test is resumed in Table 5.

The right hand side used for all tests, unless explicitly
written, is assumed to be (1 + i)1, that is, 1 + i for all
components. A test from a real application is found in
[2], from which the complex symmetric SPD matrices are
provided with a specific right hand side. Size and name of the
matrices are resumed in Table 6.

Table 6

Test name Matrix name Number of rows NNZ
S13k eddy 6k gauged 13 067 295 571
S32k eddy 16k gauged 31 853 720 689
S500k eddy 265k gauged 538 709 11 690 125

List of the tests is as follows: for the first group (T tests)
the right hand side was (1+i)1; for the second group (S tests)
the right hand side was the one prescribed in the paper [2].

7.1. Analysis of the Experiments. From the comparison of
Tables 1, 2, and 3 it is clear that there is no preconditioner that
is always better than the others. The optimal preconditioner
is in general problem dependent; therefore, for general
preconditioners, a good quality measure is the robustness
over different problems. Table 3 shows that the strategy
presented in Section 2 is effective. In fact, when the ILU
factorization is available and the iterations converge, incom-
plete factorization preconditioner is faster than polynomial
preconditioner, but the proposed polynomial preconditioner
is an effective alternative when ILU is not available or when
it is not sufficient as preconditioner. This is true also for the
relatively smallmatriceswith 5000 rows,where the number of
iterations of the ILU-based methods is comparable with the
polynomial preconditioners of low degree, for example, 10.
Rising the degree of the polynomial corresponds to lowering
the number of iterations needed by COCG/COCR. It is also
apparent that it is not possible to go below a certain number
of iterations even with a very high degree polynomial; this
is evident, for example, in test T16k of Table 3 with both
COCG and COCR and with both preconditioners. This is
explained from the fact that the condition number of the
preconditioned system is independent of the system size.
Another behaviour that is common to most of the tests is the
better performance of the COCR over the COCG: this can be
appreciated looking at Figure 2 and Figure 3. They show the
history of the residual for each iteration of bothmethods with
the Jacobi and the Chebyshev preconditioners. In both cases
the decrease of the residual is always slower in the COCG
than in the COCR; also the number of iterations is higher.

8. Conclusions

A polynomial preconditioner was presented for the solution
of the linear system Ax = b, for A complex symmetric,
that is, such that A = B + iC, where B, C are real
symmetric positive semidefinite matrices (semi-SPD) and
B +C is symmetric positive definite (SPD). Typical problems
of this form come from the field of electrodynamics, where
the involved matrices are complex but not Hermitian and
standard methods cannot be used directly. This algorithm is
suitable for large matrices, where Cholesky decomposition,
or its inexact form, are too costly or infeasible. It works as
a polynomial approximation of a single step of the MHSS
method, but it is successfully applied as preconditioner of

Mathematical Problems in Engineering 17

Polynomial of degree 10

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Polynomial of degree 10

0 100 200 300 400 500 600 700

Polynomial of degree 50

0 100 200 300 400 500 600 700

Polynomial of degree 50

0 10 20 30 40 50 60

0 10 20 30 40 50 60

Polynomial of degree 500

0 50 100 150 200 250 300

Polynomial of degree 100

0 50 100 150 200 250 300

Polynomial of degree 100 Polynomial of degree 500

100

10−2

10−4

10−6

10−8

100

10−2

10−4

10−6

10−8

100

10−2

10−4

10−6

10−8

100

10−2

10−4

10−6

10−8

100

10−2

10−4

10−6

10−8

100

10−2

10−4

10−6

10−8

100

10−2

10−4

10−6

10−8

100

10−2

10−4

10−6

10−8

COCR + Jacobi
COCG + Jacobi

COCR + Jacobi
COCG + Jacobi

COCR + Jacobi
COCG + Jacobi

COCR + Jacobi
COCG + Jacobi

COCR + Chebyshev
COCG + Chebyshev

COCR + Chebyshev
COCG + Chebyshev

COCR + Chebyshev
COCG + Chebyshev

COCR + Chebyshev
COCG + Chebyshev

Figure 2: The history of the residual for the test T80k with COCR and COCG preconditioned with Jacobi and Chebyshev polynomial.

conjugate gradient-like methods; in particular it is showed
how to use it together with COCG or COCR. Following
the trend of the last years, but being aware of the criticism
that arose in the 80s, the proposed new preconditioner is

computed as a recurrence of orthogonal polynomials and is
proved to be stable. This allows employing polynomials of
very high degree and numerical tests confirm the expected
theoretical good performances.

18 Mathematical Problems in Engineering

1 1000 2000 3000 4000

1 1000 2000 3000 4000

Polynomial of degree 50

1 500 1000 1500 2000

1 500 1000 1500 2000

Polynomial of degree 100

Polynomial of degree 50 Polynomial of degree 100

Polynomial of degree 500 Polynomial of degree 1000

Polynomial of degree 500 Polynomial of degree 1000

1 50 100 1501 100 200 300

1 100 200 300 1 50 100 150

100

10−3

10−6

10−9

100

10−3

10−6

10−9

100

10−3

10−6

10−9

100

10−3

10−6

10−9

100

10−3

10−6

10−9

100

10−3

10−6

10−9

100

10−3

10−6

10−9

100

10−3

10−6

10−9

COCR + Jacobi
COCG + Jacobi

COCR + Jacobi
COCG + Jacobi

COCR + Jacobi
COCG + Jacobi

COCR + Jacobi
COCG + Jacobi

COCR + Chebyshev
COCG + Chebyshev

COCR + Chebyshev
COCG + Chebyshev

COCR + Chebyshev
COCG + Chebyshev

COCR + Chebyshev
COCG + Chebyshev

Figure 3: The history of the residual for the test S500k with COCR and COCG preconditioned with Jacobi and Chebyshev polynomial.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors wish to thank Professor R. Specogna for pro-
viding the matrices used for the Eddy Current test problems

Mathematical Problems in Engineering 19

S13k, S32k, and S500k. They are also grateful for the positive
and constructive feedback in testing the presented precondi-
tioners on real problems.

References

[1] U. VanRienen, NumericalMethods in Computational Electrody-
namics: Linear Systems in Practical Applications, Lecture Notes
in Computational Science and Engineering, Springer, Berlin,
Germany, 2001.

[2] L. Codecasa, R. Specogna, and F. Trevisan, “Base functions and
discrete constitutive relations for staggered polyhedral grids,”
Computer Methods in Applied Mechanics and Engineering, vol.
198, no. 9–12, pp. 1117–1123, 2009.

[3] A. Pirani, M. Ricci, R. Specogna, A. Tamburrino, and F. Tre-
visan, “Multi-frequency identification of defects in conducting
media,” Inverse Problems, vol. 24, no. 3, Article ID 035011, 2008.

[4] H. A. van der Vorst and J. B.M.Melissen, “Petrov-Galerkin type
method for solving Ax = b, where A is symmetric complex,”
IEEE Transactions on Magnetics, vol. 26, no. 2, pp. 706–708,
1990.

[5] T. Sogabe and S.-L. Zhang, “A COCR method for solving
complex symmetric linear systems,” Journal of Computational
and Applied Mathematics, vol. 199, no. 2, pp. 297–303, 2007.

[6] A. Bunse-Gerstner andR. Stöver, “On a conjugate gradient-type
method for solving complex symmetric linear systems,” Linear
Algebra and Its Applications, vol. 287, no. 1–3, pp. 105–123, 1999.

[7] H. Sadok, “CMRH: a new method for solving nonsymmetric
linear systems based on the Hessenberg reduction algorithm,”
Numerical Algorithms, vol. 20, no. 4, pp. 303–321, 1999.

[8] H. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging
variant of Bi-CG f or the solution of nonsymmetric linear
systems,” SIAM Journal on Scienti fi c and Statistical Computing,
vol. 13, no. 2, pp. 631–644, 1992.

[9] G. L. G. Sleijpen and H. A. van der Vorst, “Maintaining
convergence properties of BiCGstabmethods in finite precision
arithmetic,” Numerical Algorithms, vol. 10, no. 2, pp. 203–223,
1995.

[10] G. L. G. Sleijpen and D. R. Fokkema, “BiCGstab(ell) for
linear equations involving unsymmetric matrices with complex
spectrum,” Electronic Transactions on Numerical Analysis, vol. 1,
pp. 11–32, 1993.

[11] Y. Saad and M. Schultz, “GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM Journal on Scientific and Statistical Computing, vol. 7, no.
3, pp. 856–869, 1986.

[12] R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal
residualmethod for non-Hermitian linear systems,”Numerische
Mathematik, vol. 60, no. 1, pp. 315–339, 1991.

[13] K. Abe and G. L. G. Sleijpen, “BiCR variants of the hybrid
BiCG methods for solving linear systems with nonsymmetric
matrices,” Journal of Computational and Applied Mathematics,
vol. 234, no. 4, pp. 985–994, 2010.

[14] Y.-F. Jing, T.-Z.Huang, Y. Zhang et al., “Lanczos-type variants of
the COCR method for complex nonsymmetric linear systems,”
Journal of Computational Physics, vol. 228, no. 17, pp. 6376–6394,
2009.

[15] Z.-Z. Bai, M. Benzi, and F. Chen, “Modified HSS iteration
methods for a class of complex symmetric linear systems,”
Computing, vol. 87, no. 3-4, pp. 93–111, 2010.

[16] Z.-Z. Bai, M. Benzi, and F. Chen, “On preconditioned MHSS
iteration methods for complex symmetric linear systems,”
Numerical Algorithms, vol. 56, no. 2, pp. 297–317, 2011.

[17] Z.-Z. Bai, G. H. Golub, and M. K. Ng, “Hermitian and
skew-Hermitian splitting methods for non-Hermitian positive
definite linear systems,” SIAM Journal on Matrix Analysis and
Applications, vol. 24, no. 3, pp. 603–626, 2003.

[18] Z.-Z. Bai, G.H.Golub, andM.K.Ng, “On inexact hermitian and
skew-Hermitian splitting methods for non-Hermitian positive
definite linear systems,” Linear Algebra and Its Applications, vol.
428, no. 2-3, pp. 413–440, 2008.

[19] O. Axelsson, “A survey of preconditioned iterative methods for
linear systems of algebraic equations,” BIT Numerical Mathe-
matics, vol. 25, no. 1, pp. 165–187, 1985.

[20] M. Benzi, “Preconditioning techniques for large linear systems:
a survey,” Journal of Computational Physics, vol. 182, no. 2, pp.
418–477, 2002.

[21] “Minimax polynomial preconditioning for Hermitian linear
systems,” SIAM Journal onMatrixAnalysis andApplications, vol.
12, pp. 766–789, 1991.

[22] S. F. Ashby, T. A. Manteuffel, and J. S. Otto, “A comparison
of adaptive Chebyshev and least squares polynomial precon-
ditioning for Hermitian positive definite linear systems,” SIAM
Journal on Scientific and Statistical Computing, vol. 13, pp. 1–29,
1992.

[23] O. Johnson, C. Micchelli, and G. Paul, “Polynomial precondi-
tioners for conjugate gradient calculations,” SIAM Journal on
Numerical Analysis, vol. 20, pp. 362–376, 1983.

[24] Y. Saad, “Practical use of polynomial preconditionings for the
conjugate gradient method,” SIAM Journal on Scientific and
Statistical Computing, vol. 6, no. 4, pp. 865–881, 1985.

[25] B. Fischer, Polynomial Based Iteration Methods for Symmetric
Linear Systems, Classics in Applied Mathematics, Society for
Industrial and Applied Mathematics, 2011.

[26] L. Lu, J. Lai, and S. Xu, “A polynomial preconditioner for the
CMRH algorithm,”Mathematical Problems in Engineering, vol.
2011, Article ID 545470, 12 pages, 2011.

[27] I. Gelfand, “Normierte Ringe,” Recueil Mathématique. Matem-
aticheskĭı Sbornik (Nouvelle Serie), vol. 9, no. 51, pp. 3–24, 1941.

[28] V. Kozyakin, “On accuracy of approximation of the spectral
radius by the Gelfand formula,” Linear Algebra and Its Appli-
cations, vol. 431, no. 11, pp. 2134–2141, 2009.

[29] A. Householder, The Theory of Matrices in Numerical Analysis,
Blaisdell Book in the Pure and Applied Sciences, Blaisdell
Publishing Company, 1965.

[30] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,
Texts in Applied Mathematics, Springer, New York, NY, USA,
2002.

[31] O. Axelsson, “Iteration number for the conjugate gradient
method,”Mathematics and Computers in Simulation, vol. 61, no.
3–6, pp. 421–435, 2003.

[32] T. Sogabe, M. Sugihara, and S.-L. Zhang, “An extension of the
conjugate residual method to nonsymmetric linear systems,”
Journal of Computational andAppliedMathematics, vol. 226, no.
1, pp. 103–113, 2009.

[33] G. Golub and C. Van Loan, Matrix Computations, Johns
Hopkins Studies in the Mathematical Sciences, Johns Hopkins
University Press, Baltimore, Md, USA, 1996.

[34] Society for Industrial and AppliedMathematics, Iterative Meth-
ods for Sparse Linear Systems, Society for Industrial and Applied
Mathematics, Philadelphia, Pa, USA, 2nd edition, 2003.

20 Mathematical Problems in Engineering

[35] “Conjugate gradient-typemethods for linear systemswith com-
plex symmetric coeficient matrices,” SIAM Journal on Scientific
and Statistical Computing, vol. 13, pp. 425–448, 1992.

[36] I. Duff, A. Erisman, and J. Reid,DirectMethods for SparseMatri-
ces,Monographs onNumerical Analysis, ClarendonPress, 1986.

[37] A. George and J. Liu, Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall Series in Computational
Mathematics, Prentice-Hall, 1981.

[38] T. A. Davis, Direct Methods for Sparse Linear Systems (Funda-
mentals of Algorithms 2), Society for Industrial and Applied
Mathematics, Philadelphia, Pa, USA, 2006.

[39] L. Bergamaschi, G. Pini, and F. Sartoretto, “Approximate inverse
preconditioning in the parallel solution of sparse eigenprob-
lems,” Numerical Linear Algebra with Applications, vol. 7, no. 3,
pp. 99–116, 2000.

[40] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue, “Approximat-
ing the inverse of a matrix for use in iterative algorithms on
vector processors,” Computing, vol. 22, no. 3, pp. 257–268, 1979.

[41] T. Dupont, R. Kendall, and H. Rachford Jr., “An approximate
factorization procedure for solving self-adjoint elliptic difier-
ence equations,” SIAM Journal on Numerical Analysis, vol. 5, pp.
559–573, 1968.

[42] C.-J. Lin and J. J. Moré, “Incomplete Cholesky factorizations
with limited memory,” SIAM Journal on Scientific Computing,
vol. 21, no. 1, pp. 24–45, 1999.

[43] Y. Saad, “ILUM: a multi-elimination ILU preconditioner for
general sparse matrices,” SIAM Journal on Scientific Computing,
vol. 17, no. 4, pp. 830–847, 1996.

[44] A. Gupta and T. George, “Adaptive techniques for improving
the performance of incomplete factorization preconditioning,”
SIAM Journal on Scientific Computing, vol. 32, no. 1, pp. 84–110,
2010.

[45] C. Janna andM. Ferronato, “Adaptive pattern research for block
fsai preconditioning,” SIAM Journal on Scientific Computing,
vol. 33, no. 6, pp. 3357–3380, 2011.

[46] J. Scott and M. Tůma, “On positive semidefinite modification
schemes for incomplete cholesky factorization,” SIAM Journal
on Scientific Computing, vol. 36, no. 2, pp. A609–A633, 2014.

[47] M. Benzi, C. D. Meyer, and M. Tůma, “A sparse approximate
inverse preconditioner for the conjugate gradient method,”
SIAM Journal on Scientific Computing, vol. 17, no. 5, pp. 1135–
1149, 1996.

[48] E. Chow, “Parallel implementation and practical use of sparse
approximate inverse preconditioners with a priori sparsity
patterns,” International Journal of High Performance Computing
Applications, vol. 15, no. 1, pp. 56–74, 2001, cited By (since
1996)36.

[49] A. Rafiei, “Left-looking version of AINV preconditioner with
complete pivoting strategy,” Linear Algebra and Its Applications,
vol. 445, pp. 103–126, 2014.

[50] D. K. Salkuyeh and F. Toutounian, “A sparse-sparse iteration for
computing a sparse incomplete factorization of the inverse of an
SPDmatrix,” Applied Numerical Mathematics, vol. 59, no. 6, pp.
1265–1273, 2009.

[51] J. Boyle, M. Mihajlović, and J. Scott, “HSL MI20: an efficient
AMG preconditioner for finite element problems in 3D,” Inter-
national Journal for Numerical Methods in Engineering, vol. 82,
no. 1, pp. 64–98, 2010.

[52] A. Napov and Y. Notay, “An algebraic multigrid method with
guaranteed convergence rate,” SIAM Journal on Scientific Com-
puting, vol. 34, no. 2, pp. A1079–A1109, 2012.

[53] K. Stuben, “An introduction to algebraic multigrid,” in Multi-
grid, U. Trottenberg, C.Oosterlee, andA. Schuller, Eds., pp. 413–
532, Academic Press, New York, NY, USA, 2001.

[54] R. Freund, “On conjugate gradient type methods and poly-
nomial preconditioners for a class of complex non-hermitian
matrices,” Numerische Mathematik, vol. 57, no. 1, pp. 285–312,
1990.

[55] E. Stiefel, Kernel Polynomials in Linear Algebra and Their
Numerical Applications, ETH, Zürich, Switzerland, 1958.

[56] S. F. Ashby, Polynomial Preconditioning for Conjugate Gradient
Methods, DOE/ER, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, 1988.

[57] G. Szego, Orthogonal Polynomials, American Mathematical
Society, 1939.

[58] R. Jungers, The Joint Spectral Radius: Theory and Applications,
Lecture Notes in Control and Information Sciences, Springer,
New York, NY, USA, 2009.

[59] G.-C. Rota and G. Strang, “A note on the joint spectral radius,”
Indagationes Mathematicae, vol. 22, pp. 379–381, 1960.

[60] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J.
J. Dongarra, “Matrix market: a web resource for test matrix
collections,” in Proceedings of the IFIP TC2/WG2.5 Working
Conference on Quality of Numerical Software: Assessment and
Enhancement, pp. 125–137, Chapman &Hall, London, UK, 1997.

[61] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software, vol.
38, no. 1, article 1, 2011.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

