7 research outputs found

    Sparse Training Theory for Scalable and Efficient Agents

    Get PDF
    A fundamental task for artificial intelligence is learning. Deep Neural Networks have proven to cope perfectly with all learning paradigms, i.e. supervised, unsupervised, and reinforcement learning. Nevertheless, traditional deep learning approaches make use of cloud computing facilities and do not scale well to autonomous agents with low computational resources. Even in the cloud, they suffer from computational and memory limitations, and they cannot be used to model adequately large physical worlds for agents which assume networks with billions of neurons. These issues are addressed in the last few years by the emerging topic of sparse training, which trains sparse networks from scratch. This paper discusses sparse training state-of-the-art, its challenges and limitations while introducing a couple of new theoretical research directions which has the potential of alleviating sparse training limitations to push deep learning scalability well beyond its current boundaries. Nevertheless, the theoretical advancements impact in complex multi-agents settings is discussed from a real-world perspective, using the smart grid case study

    Artificial Neural Networks generated by Low Discrepancy Sequences

    Full text link
    Artificial neural networks can be represented by paths. Generated as random walks on a dense network graph, we find that the resulting sparse networks allow for deterministic initialization and even weights with fixed sign. Such networks can be trained sparse from scratch, avoiding the expensive procedure of training a dense network and compressing it afterwards. Although sparse, weights are accessed as contiguous blocks of memory. In addition, enumerating the paths using deterministic low discrepancy sequences, for example the Sobol' sequence, amounts to connecting the layers of neural units by progressive permutations, which naturally avoids bank conflicts in parallel computer hardware. We demonstrate that the artificial neural networks generated by low discrepancy sequences can achieve an accuracy within reach of their dense counterparts at a much lower computational complexity

    Spartan: a sparsity-adaptive framework to accelerate deep neural network training on GPUs

    Get PDF
    Deep Neural Networks (DNNs) have emerged as an important class of machine learning algorithms, providing accurate solutions to a broad range of applications. Sparsity in activation maps in DNN training presents an opportunity to reduce computations. However, exploiting activation sparsity presents two major challenges: i) profiling activation sparsity during training comes with significant overhead due to computing the degree of sparsity and the data movement; ii) the dynamic nature of activation maps requires dynamic dense-to-sparse conversion during training, leading to significant overhead. In this paper, we present Spartan, a lightweight hardware/software framework to accelerate DNN training on a GPU. Spartan provides a cost effective and programmer-transparent microarchitectural solution to exploit activation sparsity detected during training. Spartan provides an efficient sparsity monitor, a tile-based sparse GEMM algorithm, and a novel compaction engine designed for GPU workloads. Spartan can reduce sparsity profiling overhead by 52.5× on average. For the most compute-intensive layers, i.e., convolutional layers, we can speedup AlexNet by 3.4×, VGGNet-16 by 2.14×, and ResNet-18 by 2.02×, when training on the ImageNet dataset

    Pre-Defined Sparse Neural Networks With Hardware Acceleration

    No full text
    corecore