387,154 research outputs found

    Law Review Tribute: Practically Perfect

    Get PDF

    Rings whose proper factors are right perfect

    Full text link
    We show that practically all the properties of almost perfect rings discovered by Bazzoni and Salce in "Almost perfect domains" (Colloq. Math. 95 (2) (2003), 285-301) for commutative rings hold in the non-commutative setting

    Terry v. Ohio: A Practically Perfect Doctrine

    Get PDF

    Half-Metallic Ferromagnetism in the Heusler Compound Co2_2FeSi revealed by Resistivity, Magnetoresistance, and Anomalous Hall Effect measurements

    Full text link
    We present electrical transport data for single-crystalline Co2_2FeSi which provide clear-cut evidence that this Heusler compound is truly a half-metallic ferromagnet, i.e. it possesses perfect spin-polarization. More specifically, the temperature dependence of ρ\rho is governed by electron scattering off magnons which are thermally excited over a sizeable gap Δ100K\Delta\approx 100 K (9meV\sim 9 meV) separating the electronic majority states at the Fermi level from the unoccupied minority states. As a consequence, electron-magnon scattering is only relevant at TΔT\gtrsim\Delta but freezes out at lower temperatures, i.e., the spin-polarization of the electrons at the Fermi level remains practically perfect for TΔT\lesssim\Delta. The gapped magnon population has a decisive influence on the magnetoresistance and the anomalous Hall effect (AHE): i) The magnetoresistance changes its sign at T100KT\sim 100 K, ii) the anomalous Hall coefficient is strongly temperature dependent at T100KT\gtrsim 100 K and compatible with Berry phase related and/or side-jump electronic deflection, whereas it is practically temperature-independent at lower temperatures

    Enhanced secure key exchange systems based on the Johnson-noise scheme

    Get PDF
    We introduce seven new versions of the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) classical physical secure key exchange scheme and a new transient protocol for practically-perfect security. While these practical improvements offer progressively enhanced security and/or speed for the non-ideal conditions, the fundamental physical laws providing the security remain the same. In the "intelligent" KLJN (iKLJN) scheme, Alice and Bob utilize the fact that they exactly know not only their own resistor value but also the stochastic time function of their own noise, which they generate before feeding it into the loop. In the "multiple" KLJN (MKLJN) system, Alice and Bob have publicly known identical sets of different resistors with a proper, publicly known truth table about the bit-interpretation of their combination. In the "keyed" KLJN (KKLJN) system, by using secure communication with a formerly shared key, Alice and Bob share a proper time-dependent truth table for the bit-interpretation of the resistor situation for each secure bit exchange step during generating the next key. The remaining four KLJN schemes are the combinations of the above protocols to synergically enhance the security properties. These are: the "intelligent-multiple" (iMKLJN), the "intelligent-keyed" (iKKLJN), the "keyed-multiple" (KMKLJN) and the "intelligent-keyed-multiple" (iKMKLJN) KLJN key exchange systems. Finally, we introduce a new transient-protocol offering practically-perfect security without privacy amplification, which is not needed at practical applications but it is shown for the sake of ongoing discussions.Comment: This version is accepted for publicatio

    Flow and Drag Formulas for Simple Quadrics

    Get PDF
    The pressure distribution and resistance found by theory and experiment for simple quadrics fixed in an infinite uniform stream of practically incompressible fluid are calculated. The experimental values pertain to air and some liquids, especially water; the theoretical refer sometimes to perfect, again to viscid fluids. Formulas for the velocity at all points of the flow field are given. Pressure and pressure drag are discussed for a sphere, a round cylinder, the elliptic cylinder, the prolate and oblate spheroid, and the circular disk. The velocity and pressure in an oblique flow are examined
    corecore