3,388 research outputs found

    Deterministic Construction of Binary, Bipolar and Ternary Compressed Sensing Matrices

    Full text link
    In this paper we establish the connection between the Orthogonal Optical Codes (OOC) and binary compressed sensing matrices. We also introduce deterministic bipolar m×nm\times n RIP fulfilling ±1\pm 1 matrices of order kk such that mO(k(log2n)log2klnlog2k)m\leq\mathcal{O}\big(k (\log_2 n)^{\frac{\log_2 k}{\ln \log_2 k}}\big). The columns of these matrices are binary BCH code vectors where the zeros are replaced by -1. Since the RIP is established by means of coherence, the simple greedy algorithms such as Matching Pursuit are able to recover the sparse solution from the noiseless samples. Due to the cyclic property of the BCH codes, we show that the FFT algorithm can be employed in the reconstruction methods to considerably reduce the computational complexity. In addition, we combine the binary and bipolar matrices to form ternary sensing matrices ({0,1,1}\{0,1,-1\} elements) that satisfy the RIP condition.Comment: The paper is accepted for publication in IEEE Transaction on Information Theor

    Compressively characterizing high-dimensional entangled states with complementary, random filtering

    Get PDF
    The resources needed to conventionally characterize a quantum system are overwhelmingly large for high- dimensional systems. This obstacle may be overcome by abandoning traditional cornerstones of quantum measurement, such as general quantum states, strong projective measurement, and assumption-free characterization. Following this reasoning, we demonstrate an efficient technique for characterizing high-dimensional, spatial entanglement with one set of measurements. We recover sharp distributions with local, random filtering of the same ensemble in momentum followed by position---something the uncertainty principle forbids for projective measurements. Exploiting the expectation that entangled signals are highly correlated, we use fewer than 5,000 measurements to characterize a 65, 536-dimensional state. Finally, we use entropic inequalities to witness entanglement without a density matrix. Our method represents the sea change unfolding in quantum measurement where methods influenced by the information theory and signal-processing communities replace unscalable, brute-force techniques---a progression previously followed by classical sensing.Comment: 13 pages, 7 figure

    Compressed Genotyping

    Full text link
    Significant volumes of knowledge have been accumulated in recent years linking subtle genetic variations to a wide variety of medical disorders from Cystic Fibrosis to mental retardation. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, largely due to the relatively tedious and expensive process of DNA sequencing. Since the genetic polymorphisms that underlie these disorders are relatively rare in the human population, the presence or absence of a disease-linked polymorphism can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies, and assembled a mathematical framework that has some important distinctions from 'traditional' compressed sensing ideas in order to address different biological and technical constraints.Comment: Submitted to IEEE Transaction on Information Theory - Special Issue on Molecular Biology and Neuroscienc
    corecore