11,805 research outputs found

    Foundations, Properties, and Security Applications of Puzzles: A Survey

    Full text link
    Cryptographic algorithms have been used not only to create robust ciphertexts but also to generate cryptograms that, contrary to the classic goal of cryptography, are meant to be broken. These cryptograms, generally called puzzles, require the use of a certain amount of resources to be solved, hence introducing a cost that is often regarded as a time delay---though it could involve other metrics as well, such as bandwidth. These powerful features have made puzzles the core of many security protocols, acquiring increasing importance in the IT security landscape. The concept of a puzzle has subsequently been extended to other types of schemes that do not use cryptographic functions, such as CAPTCHAs, which are used to discriminate humans from machines. Overall, puzzles have experienced a renewed interest with the advent of Bitcoin, which uses a CPU-intensive puzzle as proof of work. In this paper, we provide a comprehensive study of the most important puzzle construction schemes available in the literature, categorizing them according to several attributes, such as resource type, verification type, and applications. We have redefined the term puzzle by collecting and integrating the scattered notions used in different works, to cover all the existing applications. Moreover, we provide an overview of the possible applications, identifying key requirements and different design approaches. Finally, we highlight the features and limitations of each approach, providing a useful guide for the future development of new puzzle schemes.Comment: This article has been accepted for publication in ACM Computing Survey

    On Non-Parallelizable Deterministic Client Puzzle Scheme with Batch Verification Modes

    Get PDF
    A (computational) client puzzle scheme enables a client to prove to a server that a certain amount of computing resources (CPU cycles and/or Memory look-ups) has been dedicated to solve a puzzle. Researchers have identified a number of potential applications, such as constructing timed cryptography, fighting junk emails, and protecting critical infrastructure from DoS attacks. In this paper, we first revisit this concept and formally define two properties, namely deterministic computation and parallel computation resistance. Our analysis show that both properties are crucial for the effectiveness of client puzzle schemes in most application scenarios. We prove that the RSW client puzzle scheme, which is based on the repeated squaring technique, achieves both properties. Secondly, we introduce two batch verification modes for the RSW client puzzle scheme in order to improve the verification efficiency of the server, and investigate three methods for handling errors in batch verifications. Lastly, we show that client puzzle schemes can be integrated with reputation systems to further improve the effectiveness in practice

    KeyForge: Mitigating Email Breaches with Forward-Forgeable Signatures

    Full text link
    Email breaches are commonplace, and they expose a wealth of personal, business, and political data that may have devastating consequences. The current email system allows any attacker who gains access to your email to prove the authenticity of the stolen messages to third parties -- a property arising from a necessary anti-spam / anti-spoofing protocol called DKIM. This exacerbates the problem of email breaches by greatly increasing the potential for attackers to damage the users' reputation, blackmail them, or sell the stolen information to third parties. In this paper, we introduce "non-attributable email", which guarantees that a wide class of adversaries are unable to convince any third party of the authenticity of stolen emails. We formally define non-attributability, and present two practical system proposals -- KeyForge and TimeForge -- that provably achieve non-attributability while maintaining the important protection against spam and spoofing that is currently provided by DKIM. Moreover, we implement KeyForge and demonstrate that that scheme is practical, achieving competitive verification and signing speed while also requiring 42% less bandwidth per email than RSA2048

    Public Key Encryption Supporting Plaintext Equality Test and User-Specified Authorization

    Get PDF
    In this paper we investigate a category of public key encryption schemes which supports plaintext equality test and user-specified authorization. With this new primitive, two users, who possess their own public/private key pairs, can issue token(s) to a proxy to authorize it to perform plaintext equality test from their ciphertexts. We provide a formal formulation for this primitive, and present a construction with provable security in our security model. To mitigate the risks against the semi-trusted proxies, we enhance the proposed cryptosystem by integrating the concept of computational client puzzles. As a showcase, we construct a secure personal health record application based on this primitive

    A digital library of language learning exercises

    Get PDF
    Recent years have seen widespread adoption of the Internet for language teaching and learning. Interactive systems on the World-Wide Web provide useful alternatives to face-to-face tuition, and both teachers and learners can benefit from the exercises available. However, although there is a wealth of suitable material, it is hard to find because it is scattered around the web. Moreover, teachers are restricted by the material that is available, and cannot provide their own. To tackle these problems we have constructed a digital library of language learning exercises that presents students with different kinds of exercise, and also lets teachers contribute new material. We first reviewed existing language learning systems on the web in order to develop a taxonomy of exercise types used for language activity. A prototype, ELLE, based on this taxonomy, provides various kinds of interactive exercises using material that teachers submit. The system has been evaluated by practicing language teachers

    Centralized prevention of denial of service attacks

    Full text link
    The world has come to depend on the Internet at an increasing rate for communication, e-commerce, and many other essential services. As such, the Internet has become an integral part of the workings of society at large. This has lead to an increased vulnerability to remotely controlled disruption of vital commercial and government operations---with obvious implications. This disruption can be caused by an attack on one or more specific networks which will deny service to legitimate users or an attack on the Internet itself by creating large amounts of spurious traffic (which will deny services to many or all networks). Individual organizations can take steps to protect themselves but this does not solve the problem of an Internet wide attack. This thesis focuses on an analysis of the different types of Denial of Service attacks and suggests an approach to prevent both categories by centralized detection and limitation of excessive packet flows
    corecore