8 research outputs found

    Extending the Tally-Hiding Ordinos System: Implementations for Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting

    Get PDF
    Modern electronic voting systems (e-voting systems) are designed to achieve a variety of security properties, such as verifiability, accountability, and vote privacy. Some of these systems aim at so-called tally-hiding: they compute the election result, according to some result function, like the winner of the election, without revealing any other information to any party. In particular, if desired, they neither reveal the full tally consisting of all (aggregated or even individual) votes nor parts of it, except for the election result, according to the result function. Tally-hiding systems offer many attractive features, such as strong privacy guarantees both for voters and for candidates, and protection against Italian attacks. The Ordinos system is a recent provably secure framework for accountable tally-hiding e-voting that extends Helios and can be instantiated for various election methods and election result functions. So far, practical instantiations and implementations for only rather simple result functions (e.g., computing the kk best candidates) and single/multi-vote elections have been developed for Ordinos. In this paper, we propose and implement several new Ordinos instantiations in order to support Borda voting, the Hare-Niemeyer method for proportional representation, multiple Condorcet methods, and Instant-Runoff Voting. Our instantiations, which are based on suitable secure multi-party computation (MPC) components, offer the first tally-hiding implementations for these voting methods. To evaluate the practicality of our MPC components and the resulting e-voting systems, we provide extensive benchmarks for all our implementations

    VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

    Get PDF
    Decentralization, verifiability, and privacy-preserving are three fundamental properties of modern e-voting. In this paper, we conduct extensive investigations into them and present a novel e-voting scheme, VeriVoting, which is the first to satisfy these properties. More specifically, decentralization is realized through blockchain technology and the distribution of decryption power among competing entities, such as candidates. Furthermore, verifiability is satisfied when the public verifies the ballots and decryption keys. And finally, bidirectional unlinkability is achieved to help preserve privacy by decoupling voter identity from ballot content. Following the ideas above, we first leverage linear homomorphic encryption schemes and non-interactive zero-knowledge argument systems to construct a voting primitive, SemiVoting, which meets decentralization, decryption-key verifiability, and ballot privacy. To further achieve ballot ciphertext verifiability and anonymity, we extend this primitive with blockchain and verifiable computation to finally arrive at VeriVoting. Through security analysis and per-formance evaluations, VeriVoting offers a new trade-off between security and efficiency that differs from all previous e-voting schemes and provides a radically novel practical ap-proach to large-scale elections

    Kryvos: Publicly Tally-Hiding Verifiable E-Voting

    Get PDF
    Elections are an important corner stone of democratic processes. In addition to publishing the final result (e.g., the overall winner), elections typically publish the full tally consisting of all (aggregated) individual votes. This causes several issues, including loss of privacy for both voters and election candidates as well as so-called Italian attacks that allow for easily coercing voters. Several e-voting systems have been proposed to address these issues by hiding (parts of) the tally. This property is called tally-hiding. Existing tally-hiding e-voting systems in the literature aim at hiding (part of) the tally from everyone, including voting authorities, while at the same time offering verifiability, an important and standard feature of modern e-voting systems which allows voters and external observers to check that the published election result indeed corresponds to how voters actually voted. In contrast, real elections often follow a different common practice for hiding the tally: the voting authorities internally compute (and learn) the full tally but publish only the final result (e.g., the winner). This practice, which we coin publicly tally-hiding, indeed solves the aforementioned issues for the public, but currently has to sacrifice verifiability due to a lack of practical systems. In this paper, we close this gap. We formalize the common notion of publicly tally-hiding and propose the first provably secure verifiable e-voting system, called Kryvos, which directly targets publicly tally-hiding elections. We instantiate our system for a wide range of both simple and complex voting methods and various result functions. We provide an extensive evaluation which shows that Kryvos is practical and able to handle a large number of candidates, complex voting methods and result functions. Altogether, Kryvos shows that the concept of publicly tally-hiding offers a new trade-off between privacy and efficiency that is different from all previous tally-hiding systems and which allows for a radically new protocol design resulting in a practical e-voting system

    Design and cryptographic security analysis of e-voting protocols

    Get PDF
    Electronic voting (e-voting) systems are used in numerous countries for political elections, but also for less critical elections within clubs and associations, and hence affect the lives of millions of people. It is therefore important to ensure that single voters' choices remain private, and to be able to verify that an election result coincides with the voters' intention. Unfortunately, for most e-voting systems employed in real elections, these fundamental security and privacy properties cannot be guaranteed, so that in particular the legitimacy of such political elections is challenged. This demonstrates the importance of employing e-voting systems that are rootedly designed to guarantee the required security. However, it turned out to be highly challenging to construct secure yet practical e-voting systems since one always has to find a balance between the (possibly conflicting) requirements of the given kind of election. In the first two chapters of the thesis' main part, we present two practical e-voting systems which are both meant for low-risk and non-political elections, e.g., within clubs or associations. We have implemented both systems to demonstrate their practicability. The first system, called sElect, is designed to be as simple as possible while still guaranteeing a good level of security. The second system, called Ordinos, provides a superior level of privacy as it only reveals the most necessary information about the election outcome, e.g., solely the winner's name but nothing else. We will rigorously analyze the security of sElect and Ordinos. To do this, we formally define the required security properties and then mathematically prove that sElect and Ordinos achieve them. In the third chapter of the thesis' main part, we provide substantial work on the fundamental notion of verifiability of e-voting systems. We analyze and compare all formal verifiability definitions from the literature regarding how meaningful, expressive, or general they are
    corecore