
Design and Cryptographic

Security Analysis of E-Voting

Protocols

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur

Erlangung der Würde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte

Abhandlung

Vorgelegt von

Johannes Müller

aus Köln

Hauptberichter: Prof. Dr. Ralf Küsters
Mitberichter: Prof. Dr. Peter Y. A. Ryan

Tag der mündlichen Prüfung: 27.05.2019

Institut für Informationssicherheit der Universität
Stuttgart

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/225601045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 12
1.1 Cryptographic Security Analysis 14
1.2 Contributions and Structure of the Thesis 15

2 Secure Electronic Voting 19
2.1 E-Voting in a Nutshell . 19
2.2 Computational Model . 21
2.3 Verifiability . 23

2.3.1 Generic Verifiability Definition 23
2.3.2 End-to-End Verifiability 26
2.3.3 Individual and Universal Verifiability 27

2.4 Accountability . 32
2.5 Privacy . 35

2.5.1 Privacy Definition . 35
2.5.2 Privacy of the Ideal Protocol 37
2.5.3 Relationship to Coercion-Resistance 40

3 sElect: A Lightweight Verifiable Remote E-Voting System 43
3.1 Features and Limitations . 44
3.2 Description . 49
3.3 Formal Protocol Model . 54
3.4 Verifiability . 59
3.5 Accountability . 61
3.6 Privacy . 63

3.6.1 Risk-avoiding Adversaries 63
3.6.2 Analysis . 65

3.7 Implementation . 66
3.8 Related Work . 68

2

4 Ordinos: A Verifiable Tally-Hiding Remote E-Voting System 70
4.1 Contributions . 71
4.2 Description . 72
4.3 Formal Protocol Model . 77
4.4 Verifiability and Accountability 82
4.5 Privacy . 84
4.6 Instantiation . 87
4.7 Implementation . 95
4.8 Related Work and Discussion 99

5 Verifiability Notions for E-Voting Protocols 101
5.1 Contributions . 101
5.2 A Specific Verifiability Goal by Küsters et al. 102

5.2.1 Model . 103
5.2.2 Verifiability . 103
5.2.3 Discussion . 104

5.3 Verifiability by Benaloh . 105
5.3.1 Model . 105
5.3.2 Verifiability . 106
5.3.3 Discussion . 107
5.3.4 Casting in the KTV Framework 108

5.4 E2E Verifiability by Kiayias et al. 109
5.4.1 Model . 109
5.4.2 E2E Verifiability . 109
5.4.3 Discussion . 110
5.4.4 Casting in the KTV Framework 112

5.5 Computational Election Verifiability by Cortier et al. 113
5.5.1 Model . 113
5.5.2 Verifiability Against Malicious Bulletin Board 114
5.5.3 Verifiability Against Malicious Registrar 116
5.5.4 Strong Verifiability . 117
5.5.5 Weak Verifiability . 117
5.5.6 Tally Uniqueness . 117
5.5.7 Discussion . 118
5.5.8 Casting in the KTV Framework 119

5.6 Computational Election Verifiability by Smyth et al. 121
5.6.1 Model . 121
5.6.2 Individual Verifiability 121
5.6.3 Universal Verifiability 121
5.6.4 Election Verifiability 122
5.6.5 Discussion . 123

3

5.6.6 Casting in the KTV Framework 123
5.7 Symbolic Verifiability by Kremer et al. 125

5.7.1 Model . 125
5.7.2 Individual and Universal Verifiability 126
5.7.3 Discussion . 126
5.7.4 Casting in the KTV Framework 127

5.8 Symbolic Verifiability by Cortier et al. 128
5.8.1 Model . 128
5.8.2 Individual Verifiability 128
5.8.3 Universal Verifiability 129
5.8.4 E2E Verifiability . 130
5.8.5 No Clash . 130
5.8.6 Discussion . 131
5.8.7 Casting in the KTV Framework 131

5.9 Publicly Auditable Secure MPC by Baum et al. 132
5.9.1 Model . 133
5.9.2 Auditable Correctness 133
5.9.3 Discussion . 135
5.9.4 Casting in the KTV Framework 135

5.10 Universal Verifiability by Chevallier-Mames et al. 136
5.10.1 Model . 136
5.10.2 Universal Verifiability 137
5.10.3 Discussion . 137
5.10.4 Casting in the KTV Framework 138

5.11 Universal Verifiability by Szepieniec et al. 139
5.11.1 Model . 139
5.11.2 Universal Verifiability 139
5.11.3 Discussion . 140

5.12 Summary and Conclusion . 140
5.12.1 Guidelines . 141
5.12.2 Exemplified Instantiation of the Guidelines 144

6 Conclusion and Future Work 147

A Cryptographic Primitives 148
A.1 Public-Key Encryption . 148
A.2 Digital Signatures . 151
A.3 Non-Interactive Zero-Knowledge Proofs 151

A.3.1 Definitions . 151
A.3.2 (NIZK) Proofs used in Ordinos 153

4

B Secure Multiparty Computation 155
B.1 Privacy . 156
B.2 Individual Accountability . 156

C Formal Proofs 158
C.1 Verifiability and Accountability Proof for sElect 158
C.2 Privacy Proof for sElect . 161
C.3 Verifiability and Accountability Proof for Ordinos 169
C.4 Privacy Proof for Ordinos . 172

5

List of Figures

2.1 Ideal privacy functionality for voting protocol. 38

3.1 Privacy level for sElect with k-risk-avoiding adversary, for different

number of honest voters nhonestvoters and different k. The honest voters

vote for two candidates, with probabilities 0.4 and 0.6. Note that

the case k = 0 also equals the ideal case. 65

4.1 Level of privacy (δ) for the ideal protocol with three candi-
dates, p1 = 0.6, p2 = 0.3, p3 = 0.1 and no dishonest voters. . . 88

4.2 Level of privacy (δ) for the ideal protocol with two candidates
and no dishonest voters. Probability for abstention: 0.3, p1 =
0.1, p2 = 0.6. 88

4.3 Level of privacy (δ) for the ideal protocol with two candidates
and n = 100 honest voters. Probability for abstention: 0.3,
p1 = 0.1, p2 = 0.6 . 89

4.4 Level of privacy (δ) for the ideal protocol with 5 candidates
and a uniform distribution on the candidates. 89

4.5 Three trustees on a local network and five candidates; 32-bit
integers for vote counts. 97

4.6 Trustees on a single machine, local network and on the Inter-
net; 16-bit integers for vote counts. 98

5.1 E2E-verifiability by Kiayias et al. 111
5.2 Verifiability against bulletin board by Cortier et al. [CGGI14] 115
5.3 Verifiability against registrar by Cortier et al. [CGGI14] 116
5.4 Weak verifiability by Cortier et al. [CGGI14] 118
5.5 Individual verifiability experiment by Smyth et al. [SFC15] . . 122
5.6 Universal verifiability experiment by Smyth et al. [SFC15] . . 122
5.7 Ideal functionality FAuditMPC by Baum et al. describing the

online phase. 134

B.1 Ideal MPC protocol. 157

6

Abbreviations

E-Voting (cf. Section 2.1)
ch choice
nchoices number of choices
C set of choices
abstain choice to abstain
fres result function
V voter
nvoters number of voters
nhonest
voters number of honest voters
ndishonest
voters number of dishonest voters

Vote voting program of voter
b ballot
VerifyV verification program of voter
pvoteverif probability that voter verifies
pabstverif probability that abstaining voter verifies
VSD voter supporting device
VoteVSD voting program of voter supporting device
VerifyVSD verification program of voter supporting device
pvsdverif probability that voter supporting devices verifies
T trustee
ntrustees number of trustees
nhonest
trustees number of honest trustees

Tally tallying program of trustees
M mix server
nservers number of mix servers
B bulletin board
AS authentication server

Computational model (cf. Section 2.2)
S scheduler
ITM interactive Turing machine

7

π / π(`) process (with security parameter 1`)
π1‖π2 connection of processes π1 and π2

P protocol
Σ set of agents of a protocol
a agent
π̂a honest program of agent a
A adversary
r protocol run
γ property/set of protocol runs of a protocol
¬γ complement of γ

Verifiability (cf. Section 2.3)
J judge
accept protocol run is accepted (by judge)
reject protocol run is rejected (by judge)
ϕ trust assumptions
γ(k, ϕ) end-to-end verifiability goal

Accountability (cf. Section 2.4)
ψ verdict
dis(a) verdict that agent a is dishonest
C accountability constraint
Φ accountability property

Privacy (cf. Section 2.5)
Vobs voter under observation
Ivoting ideal voting protocol
δideal privacy level of ideal voting protocol

Encryption (cf. Appendix A.1)
E public-key encryption scheme
KeyGen key generation algorithm
KeyShareGen key share generation algorithm
PublicKeyGen public key generation algorithm
Enc encryption algorithm
Dec decryption algorithm
DecShare decryption share algorithm
sk secret key
skk k-th secret key share
pk public key
deck k-th decryption share

8

Signatures (cf. Appendix A.2)
S signature scheme
KeyGen key generation algorithm
Sign signature algorithm
Verify verification algorithm

MPC multi-party computation
NIZKP non-interactive zero-knowledge proof (cf. Appendix A.3)

9

Abstract

Electronic voting (e-voting) systems are used in numerous countries for polit-
ical elections, but also for less critical elections within clubs and associations,
and hence affect the lives of millions of people. It is therefore important to
ensure that single voters’ choices remain private, and to be able to verify
that an election result coincides with the voters’ intention. Unfortunately,
for most e-voting systems employed in real elections, these fundamental se-
curity and privacy properties cannot be guaranteed, so that in particular the
legitimacy of such political elections is challenged.

This demonstrates the importance of employing e-voting systems that are
rootedly designed to guarantee the required security. However, it turned out
to be highly challenging to construct secure yet practical e-voting systems
since one always has to find a balance between the (possibly conflicting)
requirements of the given kind of election.

In the first two chapters of the thesis’ main part, we present two prac-
tical e-voting systems which are both meant for low-risk and non-political
elections, e.g., within clubs or associations. We have implemented both sys-
tems to demonstrate their practicability. The first system, called sElect, is
designed to be as simple as possible while still guaranteeing a good level
of security. The second system, called Ordinos, provides a superior level of
privacy as it only reveals the most necessary information about the election
outcome, e.g., solely the winner’s name but nothing else. We will rigorously
analyze the security of sElect and Ordinos. To do this, we formally define
the required security properties and then mathematically prove that sElect
and Ordinos achieve them.

In the third chapter of the thesis’ main part, we provide substantial work
on the fundamental notion of verifiability of e-voting systems. We analyze
and compare all formal verifiability definitions from the literature regarding
how meaningful, expressive, or general they are.

10

Kurzzusammenfassung

Elektronische Wahlsysteme werden in zahlreichen Ländern der Welt für poli-
tische Wahlen, aber auch für weniger kritische Abstimmungen in Vereinen
oder Verbänden, benutzt und beeinflussen so das Leben vieler Menschen. Da-
her ist es wichtig sicherzustellen, dass die einzelnen Wählerstimmen geheim
bleiben und dass man verifizieren kann, dass das Resultat einer Wahl mit
dem Willen der Wähler übereinstimmt. Diese fundamentalen Sicherheits-
und Vertraulichkeitseigenschaften können jedoch für die meisten in der Praxis
eingesetzten elektronischen Wahlsysteme nicht garantiert werden. Dies stellt
insbesondere die Legitimität solcher politischer Wahlen infrage.

Deshalb ist es wichtig, elektronische Wahlsysteme zu benutzen, die von
Grund auf so entworfen wurden, dass sie die gewünschte Sicherheit liefern.
Es hat sich allerdings als äußerst anspruchsvoll herausgestellt, elektronische
Wahlsysteme zu konstruieren, die sowohl sicher als auch praktikabel sind, da
man dabei stets eine Balance zwischen Eigenschaften finden muss, die sich
gegenseitig ungünstig beeinflußen (können).

In den ersten zwei Hauptteilen dieser Arbeit werden wir zwei praktis-
che elektronische Wahlsysteme vorstellen, die beide für risikoarme, nicht-
politische Wahlen entworfen wurden, etwa in Vereinen oder Verbänden. Wir
haben beide Systeme implementiert, um ihre Praktibilität zu demonstrieren.
Das erste System heißt sElect und ist so gestaltet, dass es möglichst einfach
ist und gleichzeitig ein gutes Maß an Sicherheit garantiert. Das zweite System
heißt Ordinos und liefert einen hohen Grad an Geheimhaltung, indem es nur
die absolut notwendigen Informationen als Resultat ausgibt, wie beispiel-
sweise nur den Namen des Gewinners und sonst nichts. Wir werden die
Sicherheit von sElect und Ordinos rigoros untersuchen. Dazu definieren wir
formal die gewünschten Sicherheitseigenschaften und beweisen dann mathe-
matisch, dass sElect und Ordinos diese Eigenschaften erfüllen.

Im dritten Hauptteil liefern wir eine grundlegende Arbeit zur elementaren
Idee von Verifizierbarkeit elektronischer Wahlsysteme. Dazu analysieren und
vergleichen wir alle formalen Verifizierbarkeitsdefinitionen aus der Literatur
im Hinblick darauf, wie sinnvoll, aussagekräftig oder allgemeingültig sie sind.

11

Chapter 1

Introduction

Systems for electronic voting (e-voting systems) have been employed in many
countries for national and municipal (political) elections, for instance in the
US, Norway, Estonia, India, Belgium, Switzerland, and Brazil. E-voting
systems are also often used in other kinds of elections within companies,
associations, clubs, etc. Many companies build e-voting systems and offer
e-voting services. There are roughly two types of e-voting systems: (i) those
where the voter has to go to a polling station in order to cast her vote using a
voting machine, and (ii) those that allow the voter to cast her vote over the
Internet using her electronic devices. In this thesis, we focus on the latter
scenario, i.e., on remote e-voting, but most of the methods and techniques
to be developed in this thesis should also apply to the former scenario.

Some of the most important security properties modern e-voting systems
should satisfy are (vote) privacy, verifiability, accountability, and coercion-
resistance as explained next.

Privacy means that outside observers or even insiders (e.g., voting au-
thorities) should not be able to tell how specific voters voted.

As for verifiability, we note that in most existing e-voting systems em-
ployed in elections so far, voters do not have any guarantees that their votes
have actually been counted. The voters’ computers, the voting machines or
the voting servers might have programming errors or, even worse, might have
been manipulated deliberately by insider or outsider attackers. E-voting sys-
tems are complex hardware and software systems, and as in all such systems,
programming errors and security vulnerabilities are unavoidable. Not sur-
prisingly, numerous problems with e-voting systems have been reported in
various countries (see, e.g., [JRSW04, CFH+07, Tod08, Dan09, WWH+10,
WWIH12, SFD+14, Eps15, And11, Loe14, IT17]). We illustrate three of
these examples below:

• In the 2011 New Jersey Primary Election [And11], votes for competing

12

parties were swapped “as a result of human error in the programming of
the voting machine used in this election”.1 The bug was only detected
by chance because the election result was obviously flawed. The bug
would most likely have been remained undetected otherwise, as the
voting protocol was not verifiable.

• An e-voting system that was used in Belgium for European, federal and
regional elections in 2014, caused “incoherent election results when it
tried to add up preferential votes”, according to a spokesman of the
ministry [Loe14]. The bug was detected because the software out-
put different results for the same input. As in the example above, it
was fortunate that the election result was obviously incorrect, as the
underlying voting protocol did not provide any means to verify the
correctness of the election result.

• As part of a hacking competition, thirty voting machines that were
used in different national elections in the US were tested [IT17]. It
was demonstrated that most of these machines provided only low level
of security. For example, some had physical ports open that could be
used to install malicious software to tamper with votes. Some of the
machines included poorly secured Wi-Fi connectivity, allowing hackers
to access and manipulate the machines remotely.

Therefore, one aims at verifiable e-voting systems. Such systems guaran-
tee that if in an election the published result is not correct, i.e., it does not
correspond to the votes actually cast by eligible voters, then this is detected
(with some probability) by voters or possibly external observers. Impor-
tantly, this property should hold true even if voting machines and servers
have programming errors or are outright malicious.

In practice, an even stronger property, called accountability, is desirable,
which not only requires that manipulations can be detected but that specific
misbehaving parties can be identified (and hence, punished).

In modern e-voting systems, verifiability and accountability are generally
achieved in the following way: As well as the result of the election, systems
publish additional data and voters are provided with some kind of a receipt
which they can use to check that their votes were actually counted. However,
care has to be taken in order not to jeopardize the voters’ privacy.

Some modern e-voting system even provide so-called coercion resistance.
That is, it should be impossible to coerce voters to vote in a certain way and
to protect against vote-selling.

1Election officials declared that they wanted to avoid the cost to the county of hiring
a programmer.

13

1.1 Cryptographic Security Analysis

In order to find out whether a given voting system achieves its desired secu-
rity properties, informally analyzing its security is not sufficient since critical
aspects can easily be overlooked. Therefore, it is necessary to formally ana-
lyze the security of voting systems based on reasonable and formal security
definitions.

There have been major achievements in the field of rigorous cryptographic
analysis of e-voting systems in the last decade or so. Formal definitions
for the central security requirements have been proposed and studied (see,
e.g., [KTV10a, KTV10b, CGK+16a, KTV11, BCG+15]). Some of these def-
initions are formulated in general and widely applicable frameworks so that
they can be applied to virtually any e-voting protocols. These frameworks
and definitions have been applied to perform rigorous security analysis of
various existing e-voting systems (see, e.g., [CS11, ACW13, CEK+15, CW17,
KT16, KTV14, KTV12b, KTV11, KTV10c, KTV10a, KTV10b]), often with
surprising results, and newly proposed systems more and more often come
with security proofs right away (see, e.g., [KMST16a, KZZ15b, KZZ15a,
KZZ17, CCFG16]).

The history of e-voting demonstrates that designing and employing se-
cure yet practical e-voting systems is a challenging task. The reason is that
different requirements need to be guaranteed which may influence each other
(adversely). Hence, there does not seem to exist a “one size fits all” e-voting
system which achieves all desired requirements. So, when designing an e-
voting system, one has to find a good balance between security, usability,
and efficiency. In particular, one has to always consider for which kind of
election the e-voting system is supposed to be used. This depends, for ex-
ample, on the given infrastructure, (technical) abilities of the voters and
developers, and the power of possible attackers.

In the main part of this thesis, we introduce, formally analyze, and im-
plement two remote e-voting systems, each of which provides its own balance
between security and simplicity. Further, we analyze all important verifia-
bility definitions in order to improve the understanding of this fundamental
security requirement of e-voting systems. In the next section, we provide a
more detailed overview of these contributions.

14

1.2 Contributions and Structure of the The-

sis

Our contributions can be outlined as detailed next.
The underlying ideas have been developed during joint discussion and

meetings with the co-authors of the publications listed below. The majority
of the technical work was done by Johannes Müller (see below for details).

sElect: A Lightweight Verifiable Remote E-Voting System

In Chapter 3, we propose a new practical voting system called sElect (se-
cure/simple elections). This system, which we implemented as a platform
independent web-based application, is meant for low-risk elections, such
as elections within clubs and associations, rather than national elections,
where—besides a reasonable level of security—simplicity and convenience
are important. sElect is designed to be particularly simple and lightweight
in terms of its structure, the cryptography it uses, and the user experience.

sElect combines several concepts, such as verification codes (see, e.g.,
[DLM82]) and Chaumian mix nets [Cha81], in a novel way. One of the unique
features of sElect is that it supports fully automated verification, which does
not require any user interaction and is triggered as soon as a voter looks at
the election result.

Despite its simplicity, we formally prove that sElect provides a good level
of privacy, verifiability, and accountability for low-risk elections. The system
is not meant to defend against coercion and mostly tries to defend against un-
trusted or malicious authorities, including inadvertent programming errors or
deliberate manipulation of servers, but excluding targeted and sophisticated
attacks against voters’ devices.

This chapter is based on the following two publications. The second
publication is the full version of the first one, including the complete protocol
model and formal proofs.

• Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung.
sElect: A Lightweight Verifiable Remote Voting System. In IEEE 29th
Computer Security Foundations Symposium, CSF 2016, Lisbon, Portu-
gal, June 27 - July 1, 2016, pages 341–354, 2016. See also [KMST16a].

• Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung.
sElect: A Lightweight Verifiable Remote Voting System. IACR Cryp-
tology ePrint Archive, 2016:438, 2016. See also [KMST16b].

15

The system has been implemented by Enrico Scapin. See Scapin’s disser-
tation [Sca18] for details.

Ordinos: A Verifiable Tally-Hiding Remote E-Voting System

Almost all e-voting systems reveal the complete election result, consisting of
the exact number of votes per candidate or even all individual votes. This
is often undesirable for various reasons. For example, in elections with only
a few voters (e.g., boardroom or jury votes), revealing the complete result
leads to a low privacy level, possibly deterring voters from voting according to
their actual preference. Instead, merely revealing the winner or a ranking of
candidates is often sufficient. This property is called tally-hiding. Although
tally-hiding offers completely new options for verifiable e-voting, it so far has
not received much attention in the literature.

In Chapter 4, we present Ordinos, the first provably secure verifiable
tally-hiding e-voting system. Ordinos is a generic extension of the prominent
Helios remote e-voting system [Adi08]. Whereas Helios always reveals the
full result, Ordinos supports several tally-hiding result functions, including
revealing only the winner of an election, the k best/worst candidates, or the
overall ranking, with or without disclosing the number of votes per candidate.

We carry out a detailed cryptographic analysis proving that Ordinos pro-
vides privacy, verifiability, and accountability. With result functions that
hide most of the full election result, the level of privacy Ordinos provides
can be much better than Helios. Our cryptographic analysis of Ordinos is
based on generic properties of the cryptographic primitives employed. This
means that they can be instantiated by arbitrary cryptographic construc-
tions satisfying these properties. We propose one such instantiation using
among others Paillier public-key encryption, an MPC protocol for greater-
than by Lipmaa and Toft [LT13], as well as NIZKPs by Schoenmakers and
Veeningen [SV15]. We implemented Ordinos based on this instantiation and
evaluated its performance, demonstrating its practicability.

This chapter is based on the following paper.

• Ralf Küsters, Julian Liedtke, Johannes Müller, Daniel Rausch, and
Andreas Vogt. Ordinos: A Verifiable Tally-Hiding Remote E-Voting
System. Currently under submission.

The proof of the ideal privacy level was done by Andreas Vogt. The cryp-
tographic primitives and the MPC protocol were implemented by Johannes
Müller, and Julian Liedtke has extended the implementation so that it can
be executed over a local network or the Internet.

16

Verifiability Notions for E-Voting Protocols

There have been intensive research efforts in the last two decades or so to
design and deploy electronic voting (e-voting) protocols/systems which al-
low voters and/or external auditors to check that the votes were counted
correctly. As described in Section 1.1, this security property is called veri-
fiability. It is meant to defend against voting devices and servers that have
programming errors or are outright malicious. In order to properly evaluate
and analyze e-voting protocols w.r.t. verifiability, one fundamental challenge
has been to formally capture the meaning of this security property. While
the first formal definitions of verifiability were devised as early as the late
1980s, new verifiability definitions are still being proposed. The definitions
differ in various aspects, including the classes of protocols they capture and
even their formulations of the very core of the meaning of verifiability. This
is an unsatisfying state of affairs, leaving the research on the verifiability of
e-voting protocols in a fuzzy state.

In Chapter 5, we review all formal definitions of verifiability proposed in
the literature and cast them in a framework proposed by Küsters, Truderung,
and Vogt (the KTV framework, see Section 2.3), yielding a uniform treat-
ment of verifiability. This enables us to provide a detailed comparison of the
various definitions of verifiability from the literature. We thoroughly discuss
advantages and disadvantages, and point to limitations and problems. Fi-
nally, from these discussions and based on the KTV framework, we distill a
general definition of verifiability, which can be instantiated in various ways,
and provide precise guidelines for its instantiation. The concepts for verifi-
ability we develop should be widely applicable also beyond the framework
used here. Overall, our work offers a well-founded reference point for future
research on the verifiability of e-voting systems.

This chapter is based on the following two publications. The second
publication is the full version of the first one, including analyses of further
verifiability definitions.

• Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and
Tomasz Truderung. Sok: Verifiability Notions for E-Voting Protocols.
In IEEE Symposium on Security and Privacy, S&P 2016, San Jose,
CA, USA, May 22-26, 2016, pages 779–798, 2016. See also [CGK+16a].

• Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and
Tomasz Truderung. Verifiability Notions for E-Voting Protocols. IACR
Cryptology ePrint Archive, 2016:287, 2016. See also [CGK+16b].

17

Further Contributions

Rigorous cryptographic security analysis plays an important role in the design
of modern e-voting systems. There has been huge progress in this field in the
last decade or so in terms of formalizing security requirements and formally
analyzing e-voting systems. In the following paper, we have summarized
some of the achievements and lessons learned, which, among others, challenge
common believes about the role of and the relationships between central
security requirements. The majority of papers on which the following paper
is based did not have Johannes Müller as an author.

• Ralf Küsters and Johannes Müller. Cryptographic Security Analysis of
E-voting Systems: Achievements, Misconceptions, and Limitations. In
Electronic Voting - Second International Joint Conference, E-Vote-ID
2017, Bregenz, Austria, October 24-27, 2017, Proceedings, pages 21–41,
2017. Invited paper. See also [KM17].

In contrast to the contributions/papers above, this work is not captured
in its own chapter. Instead, fragments of this work can be found in Chapter 2,
where we formally introduce the fundamental security definitions for e-voting
systems and provide some background on their relationships.

18

Chapter 2

Secure Electronic Voting

In this chapter, we first provide some background on e-voting and introduce
notation that we use throughout the work. In Section 2.2, we describe the
framework in which we model e-voting protocols. In Sections 2.3 to 2.5, we
introduce the formal definitions of verifiability, accountability, and privacy
that we apply to formally analyze e-voting protocols.

2.1 E-Voting in a Nutshell

An electronic voting system is a distributed system. In such a system, a voter,
possibly using some voter supporting device (VSD) (e.g., a desktop computer
or smartphone), computes a ballot, typically containing the voter’s choice in
an encrypted or encoded form, and casts it. Often this means that the ballot
is put on a bulletin board (see also below). The ballots are collected (e.g.,
from the bulletin board) and tallied by trustees/voting authorities. In modern
e-voting protocols, the tallying is, for example, done by combining all ballots
into one, using homomorphic encryption, and then decrypting the resulting
ballot, or by using mix-nets, where the ballots before being decrypted are
shuffled. At the beginning of an election, the voting authorities produce the
election parameters prm, typically containing keys and a set of valid choices C,
the choice space. In general, C can be an arbitrary set, containing just the set
of candidates, if voters can choose one candidate among a set of candidates,
or even tuples of candidates, if voters can choose several candidates or rank
them. We emphasize that we consider abstention to be one of the choices in
C.

In this work, we denote the voters by V1, . . . ,Vnvoters and their VSDs by
VSD1, . . . ,VSDnvoters (if any). In order to cast a vote, a voter Vi first picks
her choice chi ∈ C. She then runs her voting procedure Vote(chi), which

19

in turn might involve providing her VSD with her choice. The VSD runs
some procedure VoteVSD, given certain parameters, e.g., the voter’s choice.
The result of running the voting procedure is a ballot bi, which, for example,
might contain chi in encrypted form. Some models or voting protocols do not
distinguish between the voter and her VSD, and in such a case, we simply
denote the voter’s voting procedure by Vote.

Often voters have to perform some verification procedure during or at
the end of the election in order to prevent/detect malicious behavior by their
VSDs or the voting authorities. We denote such a procedure by Verify. This
procedure might for example involve checking that the voter’s ballot appears
on the bulletin board or performing certain cryptographic tasks. Carrying
out Verify will often require some trusted device.

We denote the trustees by T1, . . . ,Tntrustees .
1 As mentioned, they collect

the ballots, tally them, and output the election result res, which belongs
to what we call the result space (fixed for a given election). The result is
computed according to a result function fres which takes as input the voters’
choices ch1, . . . , chnvoters and outputs res. (Of course, dishonest trustees might
try to manipulate the election outcome, which by the verifiability property,
as discussed in Section 2.3, should be detected.) The result function should
be specified by the election authorities before an election starts.

At the end or throughout the election, auditors/judges might check cer-
tain information in order to detect malicious behavior. Typically, these
checks are based solely on publicly available information, and hence, in most
cases their task can be carried out by any party. They might, for exam-
ple, check certain zero-knowledge proofs. In what follows, we consider the
auditors/judges to be one party J, who is assumed to be honest.

As already noted above, most election protocols assume an append-only
bulletin board B. An honest bulletin board stores all the input it receives from
arbitrary participants in a list, and it outputs the list on request. Typically,
public parameters, such as public keys, the election result, voters’ ballots,
and other public information, such as zero-knowledge proofs generated by
voting authorities, are published on the bulletin board. As we will see, in
most models (and many protocols) a single honest bulletin board is assumed.
However, trust can be distributed [CS14, KKL+18]. Providing robust and
trustworthy bulletin boards, while very important, is mainly considered to
be a task orthogonal to the rest of the election protocol. For this reason, we
will mostly refer to the (honest) bulletin board B, which in practice might
involve a distributed solution rather than a single trusted server.

1We note that trustees can also mix servers. For the sake of simplicity, we only use the
term “trustee” in what follows and regard mix servers as a special case of trustees.

20

2.2 Computational Model

In this section, we describe the computational model [KTV10b] that we will
use in this thesis to formally model e-voting protocols and analyze their
security.

Processes are the core of the computational model. Based on them, pro-
tocols are defined.

Process. A process is a set of probabilistic polynomial-time interactive Tur-
ing machines (ITMs, also called programs) which are connected via named
tapes (also called channels). Two programs with a channel of the same name
but opposite directions (input/output) are connected by this channel. A pro-
cess may have external input/output channels, those that are not connected
internally. At any time of a process run, one program is active only. The
active program may send a message to another program via a channel. This
program then becomes active and after some computation can send a mes-
sage to another program, and so on. Each process contains a master program,
which is the first program to be activated and which is activated if the active
program did not produce output (and hence, did not activate another pro-
gram). If the master program is active but does not produce output, a run
stops.

We write a process π as π = p1|| · · · ||pl, where p1 . . . , pl are programs. If
π1 and π2 are processes, then π1||π2 is a process, provided that the processes
are connectible: two processes are connectible if common external channels,
i.e., channels with the same name, have opposite directions (input/output);
internal channels are renamed, if necessary. A process π where all programs
are given the security parameter 1` is denoted by π(`). In the processes we
consider the length of a run is always polynomially bounded in `. Clearly, a
run is uniquely determined by the random coins used by the programs in π.

Protocol. A protocol P is defined by a set of agents Σ (also called parties
or protocol participants), and a program π̂a which is supposed to be run by
the agent. This program is the honest program of a. Agents are pairwise
connected by channels and every agent has a channel to the adversary (see
below).2

Typically, a protocol P contains a scheduler S as one of its participants
which acts as the master program of the protocol process (see below). The
task of the scheduler is to trigger the protocol participants and the adver-
sary in the appropriate order. For example, in the context of e-voting, the

2We note that in [KTV10b] agents were assigned sets of potential programs they could
run plus an honest program. Here, w.l.o.g., they are assigned only one honest program
(which, however, might be corrupted later on).

21

scheduler would trigger protocol participants according to the phases of an
election, e.g., (i) register, (ii) vote, (iii) tally, (iv) verify.

If π̂a1 , . . . , π̂an are the honest programs of the agents of P , then we denote
the process π̂a1|| . . . ||π̂an by πP .

The process πP is always run with an adversary A. The adversary may run
an arbitrary probabilistic polynomial-time program and has channels to all
protocol participants in πP . Hence, a run r of P with adversary (adversary
program) πA is a run of the process πP ||πA. We consider πP ||πA to be part
of the description of r, so that it is always clear to which process, including
the adversary, the run r belongs.

The honest programs of the agents of P are typically specified in such
a way that the adversary A can corrupt the programs by sending the mes-
sage corrupt. Upon receiving such a message, the agent reveals all or some
of its internal state to the adversary and from then on is controlled by the
adversary. Some agents, such as the scheduler or a judge, will typically not
be corruptible, i.e., they would ignore corrupt messages. Also, agents might
only accept corrupt message upon initialization, modeling static corruption.
Altogether, this allows for great flexibility in defining different kinds of cor-
ruption, including various forms of static and dynamic corruption.

We say that an agent a is honest in a protocol run r if the agent has
not been corrupted in this run, i.e., has not accepted a corrupt message
throughout the run. We say that an agent a is honest if for all adversarial
programs πA the agent is honest in all runs of πP ||πA, i.e., a always ignores
all corrupt messages.

Property. A property γ of P is a subset of the set of all runs of P .3 By ¬γ
we denote the complement of γ.

Negligible, overwhelming, δ-bounded. As usual, a function f from the
natural numbers to the interval [0, 1] is negligible if, for every c > 0, there
exists `0 such that f(`) ≤ 1

`c
for all ` > `0. The function f is overwhelming if

the function 1− f is negligible. A function f is δ-bounded if, for every c > 0
there exists `0 such that f(`) ≤ δ + 1

`c
for all ` > `0.

3Recall that the description of a run r of P contains the description of the process
πP ||πA (and hence, in particular the adversary) from which r originates. Hence, γ can be
formulated independently of a specific adversary.

22

2.3 Verifiability

In Section 1.1, we have seen that numerous e-voting systems suffer from
flaws that make it possible for more or less sophisticated attackers to change
the election result. Therefore, modern e-voting systems strive for what is
called verifiability, more precisely end-to-end verifiability. Roughly speaking,
end-to-end verifiability requires that voters and possibly external auditors
should be able to check whether the published election result is correct, i.e.,
corresponds to the votes cast by the voters, even if voting devices and servers
have programming errors or are outright malicious.

In the remainder of this section, we first recapitulate the general verifi-
ability definition by Küsters et al. [KTV10b] (Section 2.3.1) and then show
how this general definition can be instantiated to model end-to-end verifia-
bility (Section 2.3.2). This definition of end-to-end verifiability will be used
to analyze verifiability of the sElect e-voting system in Section 3.4 and of
the Ordinos e-voting system in Section 4.4. In Section 2.3.3, we then dis-
cuss the prominent notions of individual and universal verifiability. Follow-
ing [KMST16a, KTV11, KTV12b], we show that, unlike commonly believed,
these two notions fail to provide a solid basis for verifiability. In particular,
they are neither necessary nor sufficient to achieve end-to-end verifiability.
In Chapter 5, we will provide a detailed and extensive analysis of all formal
verifiability definitions that have been proposed in the literature so far.

2.3.1 Generic Verifiability Definition

About 30 years ago, Benaloh provided a first definition of end-to-end ver-
ifiability [Ben87]. As discussed in Section 5.3, while Benaloh’s definition
is fairly simple and captures the essence of verifiability, it requires unreal-
istically strong properties so that it would reject even reasonable e-voting
systems.

In [KTV10b], Küsters, Truderung, and Vogt introduced a generic frame-
work (the KTV framework) for verifiability and, more precisely, the even
stronger notion of accountability (see Section 2.4). They also instantiated
the framework to define end-to-end verifiability; also called global verifia-
bility in [KTV10b], in contrast to individual and universal verifiability (see
Section 2.3.2 and 2.3.3). This framework and definition since then have
been used to analyze several e-voting protocols and mix nets, such as Helios,
ThreeBallot, VAV, Wombat Voting, sElect, Ordinos, Chaumian RPC mix
nets, and re-encryption RPC mix nets [KTV10b, KTV14, KTV12b, KTV11,
KT16, KMST16a]. It can also be applied to other domains, such as auc-
tions and contract signing [KTV10b]. Interestingly, in Chapter 5, we will

23

demonstrate that is possible to cast all formal verifiability definitions from
the literature into the generic KTV framework.

In what follows, we recall the KTV framework and then, in Section 2.3.2,
its instantiation which captures end-to-end verifiability. We note that in the
original publication [KTV10b], formalizations both in a symbolic as well as
a computational model were presented. Here, as throughout the thesis, we
concentrate on the computational model, as introduced in Section 2.2.

The KTV framework comes with a general definition of verifiability which
in particular can be instantiated to model end-to-end verifiability (see Sec-
tion 2.3.2). The definition assumes a judge J whose role is to accept or reject
a protocol run by writing accept or reject on a dedicated channel ψJ. To make
a decision, the judge runs a so-called judging procedure, which performs cer-
tain checks (depending on the protocol specification), such as verification of
all zero-knowledge proofs (if any) and taking voter complaints into account.
Intuitively, J accepts a run if the protocol run looks as expected. The judg-
ing procedure should be part of the protocol specification. So, formally the
judge should be one of the protocol participants in the considered protocol
P , and hence, precisely specified. The input to the judge typically is solely
public information, including all information and complaints (e.g., by vot-
ers) posted on the bulletin board. Therefore the judge can be thought of as
a “virtual” entity: the judging procedure can be carried out by any party,
including external observers and even voters themselves.

The definition of verifiability is centered around the notion of a goal of
the protocol. Formally, a goal is simply a property γ of the system, i.e., a set
of runs (see Section 2.2). Intuitively, such a goal specifies those runs which
are “correct” in some protocol-specific sense. For e-voting, intuitively, the
goal would contain those runs where the announced result of the election
corresponds to the actual choices of the voters.

Now, the idea behind the definition is very simple. The judge J should
accept a run only if the goal γ is met, and hence, the published election result
corresponds to the actual choices of the voters. More precisely, the definition
requires that the probability (over the set of all runs of the protocol) that
the goal γ is not satisfied but the judge nevertheless accepts the run is δ-
bounded. Although δ = 0 is desirable, this would be too strong for almost all
e-voting protocols. For example, typically not all voters check whether their
ballot appears on the bulletin board, giving an adversary A the opportunity
to manipulate or drop some ballots without being detected. Therefore, δ = 0
cannot be achieved in general.

By Pr[π(`) 7→ (J : accept)] we denote the probability that π, with secu-
rity parameter 1`, produces a run which is accepted by J. Analogously, by
Pr[π(`) 7→ ¬γ, (J : accept)] we denote the probability that π, with security

24

parameter 1`, produces a run which is not in γ but nevertheless accepted by
the judge J.

Definition 1 (Verifiability). Let P be a protocol with the set of agents Σ.
Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge and γ be a goal. Then, we
say that the protocol P is (γ, δ)-verifiable by the judge J if for all adversaries
πA and π = (πP ||πA), the probability

Pr[π(`) 7→ ¬γ, (J : accept)]

is δ-bounded as a function of `.

A protocol P could trivially satisfy verifiability with a judge who never
accepts a run. Therefore, one of course would also require a soundness or
fairness condition. That is, one would except at the very least that if the
protocol runs with a benign adversary, which, in particular, would not cor-
rupt parties, then the judge accepts a run. Formally, for a benign adversary
πA we require that Pr[π(`) 7→ (J : accept)] is overwhelming. One could even
require that the judge accepts a run as soon as a certain subset of protocol
participants are honest, e.g., the voting authorities (see, e.g., [KTV10b] for a
more detailed discussion). These kinds of fairness/soundness properties can
be considered to be sanity checks of the judging procedure and are typically
easy to check. Most definitions of verifiability in the literature do not explic-
itly mention this property. For brevity of presentation, we therefore mostly
ignore this issue here as well.

Definition 1 captures the essence of the notion of verifiability in a very
simple way, as explained above. In addition, it provides great flexibility and
it is applicable to arbitrary classes of e-voting protocols. This is in contrast
to most other definitions of verifiability, as we will see in Chapter 5, which are
mostly tailored to specific classes of protocols. This flexibility in fact lets us
express the other definitions in terms of Definition 1. There are two reasons
for the flexibility. First, the notion of a protocol P used in Definition 1
is very general: a protocol is simply an arbitrary set of interacting Turing
machines, with one of them playing the role of the judge. Second, the goal γ
provides great flexibility in expressing what an e-voting protocol is supposed
to achieve in terms of verifiability.

Remark 1. Note that whether a verifiable protocol is in fact verified typically
depends on the specific protocol run. For example, while a given protocol
may, in theory, be perfectly verifiable, it is possible that the required checks to
ensure a goal γ are so difficult to use that they are not executed in practice
(with sufficiently high probability). Hence, verifiability is necessary but not
sufficient to guarantee that a goal γ (e.g., the correctness of the election
result) is actually verified.

25

2.3.2 End-to-End Verifiability

On a high level, Küsters et al. capture end-to-end verifiability in the KTV
framework as follows. The probability that a run is accepted (by a judge
or other observers), but the published election result does not correspond
to the actual votes cast by the voters is small (bounded by some parameter
δ). More specifically, the result should contain all votes of the honest voters,
except for at most k honest votes (for some parameter k ≥ 0), and it should
contain at most one vote for every dishonest voter.

More precisely, Küsters et al. [KTV10b] proposed the following instanti-
ation of the generic verifiability definition to capture end-to-end verifiability.
To this end, they introduce a family of goals which has been slightly refined
in [CGK+16a] to yield a family of goals of the form γ(k, ϕ). The parameter ϕ
is a Boolean formula that describes which protocol participants are assumed
to be honest in a run, i.e., those participants which cannot be corrupted
by the adversary. For example, if we want to model that the scheduler S,
the judge J, and the bulletin board B are assumed to be honest while all
other participants can actively deviate from their honest programs, we set
ϕ = hon(S) ∧ hon(J) ∧ hon(B).

On a high level, the parameter k denotes the maximum number of choices
made by the honest voters that the adversary is allowed to manipulate. So,
roughly speaking, altogether the goal γ(k, ϕ) contains all runs of a voting
protocol P where either (i) the trust assumption ϕ is violated (e.g., at least
one of the parties S, J, or B in the example above have been corrupted), or
(ii) where ϕ holds true and the adversary has manipulated at most k votes
of honest voters and every dishonest voter votes at most once. Before we
formally define the goal γ(k, ϕ) below, we illustrate the goal to provide some
intuition.

Example 1. Consider a run of an e-voting protocol with three honest voters
and two dishonest voters. We set ϕ = hon(S) ∧ hon(J) ∧ hon(B) as above.
Assume that there are two candidates/choices A and B, and that the tallying
function returns the number of votes for each candidate. Now, if all honest
voters vote for, say, A, the final result equals (A,B) = (2, 2), and ϕ holds
true, then γ(k, ϕ) is achieved for all k ≥ 1: one vote of an honest voter is
missing, and there is at most one vote for every dishonest voter. Conversely,
γ(0, ϕ) is not achieved because this would require that all votes of the honest
voters are counted, which is not the case here.

We now formally define the goal γ(k, ϕ). In order to define the number
of manipulated votes, we consider a specific distance function d. In order
to define d, we first define a function fcount : C

∗ → NC which, for a vector

26

(ch1, . . . , chl) ∈ C∗ (representing a multiset of voters’ choices), counts how
many times each choice occurs in this vector. For example, fcount(B,C,C)
assigns 1 to B, 2 to C, and 0 to all the remaining choices. Now, for two
vectors of choices ~c0,~c1, the distance function d is defined by

d(~c0,~c1) =
∑
ch∈C

|fcount(~c0)[ch]− fcount(~c1)[ch]| .

For example, d((B,C,C), (A,C,C,C)) = 3.
Now, let fres : C∗ → {0, 1}∗ be a result function, and, for a given protocol

run r, let (chi)i∈Ihonest be the vector of choices made by the honest voters Ihonest
in r.4 Then, the goal γ(k, ϕ) is satisfied in r (i.e., r belongs to γ(k, ϕ)) if
either (a) the trust assumption ϕ does not hold true in r, or (b) ϕ holds true
in r and there exist valid choices (ch′i)i∈Idishonest (representing possible choices
of the dishonest voters Idishonest in r) and choices ~creal = (chreali)i≤nvoters such
that:

(i) an election result is published in r and this result is equal to fres(~creal),
and

(ii) d(~cideal,~creal) ≤ k,

where ~cideal consists of the actual choices (chi)i∈Ihonest made by the honest
voters (recall the notion of actual choices from Section 2.2) and the possible
choices (ch′i)i∈Idishonest made by the dishonest voters.

With this definition of goals, Definition 1 captures end-to-end verifiability:
the probability that the judge accepts a run where more than k votes of honest
voters were manipulated or dishonest voters could cast too many votes, is
bounded by δ. In security statements about concrete e-voting protocols (see,
e.g., Theorem 2 or 5), δ will typically depend on various parameters, such
as k and the probability that voters perform certain checks. While k = 0 is
desirable, this is in most cases impossible to achieve because, for example,
voters might not always perform the required checks, and hence, there is a
chance that manipulation of votes goes undetected.

Importantly, this definition of end-to-end verifiability allows one to mea-
sure the level of end-to-end verifiability an e-voting protocol provides.

2.3.3 Individual and Universal Verifiability

Sako and Kilian [SK95] introduced the notions of individual and universal
verifiability. These requirements (and subsequent notions, such as cast-as-
intended, etc.) have become very popular and are still used to design and

4Recall that the set of honest/dishonest parties is determined at the beginning of each
protocol run.

27

analyze e-voting systems. According to Sako and Kilian, an e-voting system
achieves individual verifiability if “a sender can verify whether or not his
message has reached its destination, but cannot determine if this is true for
the other voters”. Universal verifiability guarantees that it is possible to
publicly verify that the tallying of the ballots is correct. That means that
the final election result exactly reflects the content of those ballots that have
been accepted to be tallied.

The notions of individual and universal verifiability have later been for-
malized by Chevallier-Mames et al. [CFP+10] (only universal verifiability),
Cortier et al. [CEK+15], and Smyth et al. [SFC15]. As demonstrated in
Chapter 5, these notions can also be captured in the KTV framework.

A Common Misconception. Unfortunately, it is often believed (see,
e.g., [SFC15]) that individual together with universal verifiability implies
end-to-end verifiability, which is the security property that e-voting systems
should achieve. However, in [KTV10b, KTV12b, KMST16a], Küsters et
al. have demonstrated that individual and universal verifiability are neither
sufficient nor necessary for end-to-end verifiability.

In short, there are e-voting systems, such as ThreeBallot and VAV [Smi07]
as well as variants of Helios, that arguably provide individual and universal
verifiability but whose verifiability is nevertheless broken, i.e., they do not
provide end-to-end verifiability. Conversely, there are e-voting systems, such
as sElect [KMST16a] (see also Chapter 3), which provide end-to-end verifia-
bility without having to rely on universal verifiability.

In what follows, we explain these results in more detail.

Not Sufficient

We recall several attacks that break the end-to-end verifiability of e-voting
systems, even though these systems provide individual and universal verifi-
ability. The first class of attacks uses that (dishonest) voters, possibly with
the help of malicious authorities, might cast malformed ballots. In the sec-
ond class of attacks (so-called clash attacks), the same receipt is shown to
different voters who voted for the same candidate, allowing malicious voting
devices and authorities to drop or manipulate ballots.

An Illustrative Example: A Modification of Helios. Helios [Adi08]
is one of the most prominent remote e-voting systems which, on a high level,
works as follows. Trustees share a secret key sk which belongs to a pub-
lic/private ElGamal key pair (pk, sk). Voters encrypt the candidate of their
choice under the public key pk and submit the resulting ciphertext to the
bulletin board. Then all ciphertexts are publicly multiplied so that, by the

28

homomorphic property of the ElGamal public-key encryption scheme, the re-
sulting ciphertext encrypts the number of votes for each candidate. Finally,
the trustees perform distributed and verifiable decryption of this ciphertext
and publish the resulting plaintext as the outcome of the election.

In order to guarantee the integrity of the election result, several zero-
knowledge proofs (ZKP) are used. Among others, a voter has to prove that
her ciphertext encrypts a valid choice, and, for privacy reasons, that she
knows which choice it encrypts.

It has been formally proven in [KTV12b, CGGI14] that Helios is end-to-
end verifiable under certain assumptions. Furthermore, assuming that the
voting devices are honest, Helios provides individual verifiability because each
voter can check whether her ballot appears on the bulletin board. Universal
verifiability follows from the fact that the multiplication of the ciphertexts
on the bulletin board is public and that the tellers perform verifiable decryp-
tion. Thus, Helios provides end-to-end verifiability as well as individual and
universal verifiability.

To see that individual and universal verifiability together do not imply
end-to-end verifiability consider a modification of Helios in which voters do
not have to prove that their votes are correct, i.e., dishonest voters may cast
malformed ballots without being detected. Then a (single!) dishonest voter
could completely spoil the election result by encrypting an invalid choice.
Such a malformed ballot might contain negative votes for certain candidates,
and hence, effectively subtracting votes from candidates, or the malformed
ballot might contain many more votes for a candidate than allowed. So,
such a system certainly does not provide end-to-end verifiability. At the
same time, such a system can still be considered to provide individual and
universal verifiability. Voters can still check that their ballots appear on the
bulletin board (individual verifiability), and ballots on the bulletin board
can still be tallied in a universally verifiable way. But dishonest voters might
have spoiled the election result completely and this is not detected.5

This simple example demonstrates that, even if a voting system achieves
individual and universal verifiability, its overall verifiability can nevertheless
completely and trivially be broken.

Another Example: ThreeBallot. The attack illustrated above concep-
tually also applies to the ThreeBallot voting system [Smi07] (also to VAV),
but the details of the attack differ. We start by briefly describing how Three-
Ballot works.

In ThreeBallot, a voter is given a multi-ballot consisting of three simple

5Note that the arguments hold true even when assuming that only eligible voters (hon-
est or dishonest) may vote.

29

ballots. On every simple ballot, the candidates, say A and B, are printed
in the same fixed order, say A is listed first and B is listed second. In the
secrecy of a voting booth, the voter is supposed to fill out all three simple
ballots in the following way: she marks the candidate of her choice on exactly
two simple ballots and every other candidate on exactly one simple ballot.
Assume, for example, that a voter votes for candidate A. Then(

x
o

)
,

(
x
o

)
,

(
o
x

)
or

(
x
x

)
,

(
o
o

)
,

(
x
o

)
would be valid multi-ballots to vote for A. After this, the voter feeds all three
simple ballots to a voting machine (a scanner) and indicates the simple ballot
she wants to get as a receipt. The machine checks the well-formedness of the
multi-ballot, prints secretly (pairwise independent) random numbers on each
simple ballot, and provides the voter with a copy of the chosen simple ballot,
with the random number printed on it. Note that the voter does not get to
see the random numbers of the remaining two simple ballots. The scanner
keeps all simple ballots (now separated) in a ballot box.

In the tallying phase, the voting machine posts on the bulletin board
(electronic copies of) all the cast simple ballots in random order. From the
ballots shown on the bulletin board, the result can easily be computed: The
number of votes for the ith candidate is the number of simple ballots with
the ith position marked minus the total number of votes (since every voter
marks every candidate at least ones).

ThreeBallot offers (some level of) individual verifiability because each
voter may check whether the simple ballot she has taken as a receipt appears
on the bulletin board. Thus, it should be risky for any party to remove or al-
ter simple ballots. Additionally, ThreeBallot offers universal verifiability be-
cause the tallying is completely public. However, as Küsters et al. [KTV11]
have pointed out, ThreeBallot does not offer end-to-end verifiability. One
variant of the attack presented in [KTV11] assumes that the scanner is dis-
honest. To illustrate the attack, assume that an honest voter votes for, say,
candidate A by submitting a multi-ballot of one of the forms shown above.
Now, a dishonest voter which collaborates with the dishonest scanner could
create a malformed ballot of the form(

o
x

)
,

(
o
x

)
,

(
o
x

)
,

which, together with the ballot of the honest voter (no matter which one
of the two kinds shown above), yields two (valid!) votes for candidate B
and no vote for candidate A. Clearly, end-to-end verifiability is broken: a

30

vote for A and one invalid ballot result in two valid votes for B. But no
honest voter would complain because none of their single/multi-ballots were
manipulated. So, this attack neither invalidates individual verifiability nor
universal verifiability, showing again that these notions together do not imply
end-to-end verifiability, and are really insufficient.

Clash Attacks. The idea of individual and universal verifiability not only
fails due to undetected malformed ballots. Another problem are clash at-
tacks [KTV12b], which might break end-to-end verifiability, while individual
and universal verifiability together again do not detect such attacks. As
demonstrated in [KTV12b], several e-voting system are vulnerable to clash
attacks, including several variants of Helios.

To illustrate the attack, consider the Helios voting system, where the
voting devices might be dishonest and where the ballots of the voters are
published on the bulletin board without voter names or pseudonyms attached
to them. Now, if two voters vote for the same candidate, the voting devices
might use the same randomness to create the ballots, and hence, the two
ballots are identical. However, instead of putting both ballots on the bulletin
board, authorities might add only one of them to the bulletin board and
the other ballot might be replaced by one for another candidate. The two
voters can check individually that “their” ballot appears on the bulletin board
(individual verifiability); they do not realize that they are looking at the same
ballot, i.e., they do not realize the “clash”. Universal verifiability is obviously
guaranteed as well. Still, the system does not provide end-to-end verifiability:
a vote of an honest voter was replaced in an undetectable way by another
vote.

Adding More Subproperties? Now that we have seen that individual
and universal verifiability do not imply the desired security property end-to-
end verifiability, it might be tempting to search for more subproperties that
would then, eventually, yield a sufficiently strong verifiability notion.

In Chapter 5, we will demonstrate that all verifiability notions proposed
in the literature so far that are split up into additional subproperties, such as
individual and universal verifiability, do not provide end-to-end verifiability,
even if more subproperties are added. In [CEK+15], for example, a subprop-
erty was introduced that rules out clash attacks but the resulting verifiability
notion is still too weak (see Section 5.8 for details).

When existing systems are analyzed w.r.t. verifiability or new systems are
proposed, one should always check for end-to-end verifiability as introduced
above, as end-to-end verifiability is the kind of verifiability modern e-voting
systems ultimately should aim for. While subproperties, such as individual
and universal verifiability, can guide the design of e-voting systems, unless

31

formally proven that their combination in fact implies end-to-end verifiability,
such properties alone might miss important aspects and can therefore not
replace end-to-end verifiability.

Not Necessary

The examples and attacks above illustrate that the notions of individual and
universal verifiability are not sufficient to provide end-to-end verifiability. In
Chapter 3, we demonstrate that they are not necessary to achieve end-to-end
verifiability either. More specifically, in Section 3.4, we formally prove that
the remote e-voting system sElect provides end-to-end verifiability (under
reasonable assumptions) because it is extremely risky for an adversary to
manipulate or drop even only a few votes. At the same time, sElect does
not rely on universal verifiability. Jumping ahead, the Chaumian mix net
employed in sElect is not verifiable by itself: it takes the voters to perform
a simple check (see Section 3.2 for details). Therefore, the example of sElect
shows that universal verifiability is not necessary for end-to-end verifiability.

2.4 Accountability

In e-voting systems, and for many other cryptographic tasks and protocols
(e.g., secure multi-party computation, identity-based encryption, and auc-
tions), it is extremely important that (semi-)trusted parties can be held ac-
countable in case they misbehave. This fundamental security property is
called accountability,6 and it is a stronger form of verifiability: it not only
allows one to verify whether a desired property is guaranteed, for example
that the election outcome is correct, but it also ensures that misbehaving
parties can be identified if this is not the case.

Accountability is important for several practical reasons. First of all,
accountability strengthens the incentive of all parties to follow their roles
because they can be singled out in case they misbehave and then might have
to face, for example, severe financial or legal penalties, or might lose their
reputation. Furthermore, accountability can resolve disputes that occur when
it is only known that some party misbehaved but not which one. This can, for
instance, help to increase the robustness of cryptographic protocols because
misbehaving parties, such as a dishonest trustee in an e-voting protocol,
can be excluded and the protocol can be re-run without the parties that
misbehaved.

6In the context of secure MPC, accountability is sometimes called identifiable
abort [IOZ14].

32

Unfortunately, despite its importance, accountability is often not taken
into account (at least not explicitly), neither to design e-voting protocols
nor to analyze their security (see, e.g., [Adi08, CCM08, RBH+10, CGGI14,
CRST15, KZZ15a, KZZ15b, RRI16, CCFG16, KZZ17]).

In [KTV10b], Küsters et al. provided a general formal definition of ac-
countability and emphasized its importance. This formal definition has since
been used to analyze different e-voting protocols (Helios, sElect, Ordinos,
Bingo Voting), mix nets (re-encryption and Chaumian mix nets with random
partial checking), auction schemes (PRST [PRST06]), and contract signing
protocols (ASW [ASW00]). These analyses brought forward several account-
ability issues, e.g., for different versions of Helios [KTV12b].

In what follows, we precisely define the notion of accountability as intro-
duced in [KTV10b]. We will apply this definition to formally establish the
level of accountability of sElect and Ordinos (see Sections 3.5 and 4.4).

A Formal Accountability Definition. The accountability definition by
Küsters, Truderung, and Vogt [KTV10b] is based on the same generic and
expressive protocol model as the verifiability definition (see Section 2.3), and
can therefore be applied to all classes of voting protocols and also to other
domains.

In contrast to the verifiability definition, the judge now not only accepts
or rejects a run, but may output detailed verdicts. A verdict is a positive
Boolean formula ψ built from propositions of the form dis(a), for an agent a,
where dis(a) means that (the judge thinks that) agent a misbehaved, i.e., did
not follow the prescribed protocol. For example, in a voting protocol with
voters V1, . . . ,Vn, a bulletin board B, and trustees T1, . . . ,Tm, if the judge J
states, say, dis(B)∧ dis(T1)∧ . . .∧ dis(Tm), then this expresses that the judge
believes that the bulletin board and all trustees misbehaved; the judge would
state dis(Vi)∨dis(B)∨(dis(T1)∧ . . .∧dis(Tm)) if she is not sure whether voter
Vi. the bulletin board, or all trustees misbehaved.

Who should be blamed in which situation is expressed by a set Φ of what
are called accountability constraints. These constrains are of the form

C = α⇒ ψ1| · · · |ψk,

where α is a property of the voting system, similar to the goal γ in Sec-
tion 2.3.2 (a set of runs of the system, where one run is determined by the
random coins used by the parties), and ψ1, . . . , ψk are verdicts. Intuitively,
the set α contains runs in which some desired goal γ of the protocol is not
met (due to the misbehavior of some protocol participant). The formulas
ψ1, . . . , ψk are the possible minimal verdicts that are supposed to be stated
by J in such a case; J is free to state stronger verdicts (by the fairness con-
dition these verdicts will be true). That is, if a run belongs to α, then C

33

requires that in this run the judge outputs a verdict ψ which logically implies
one of ψi.

To illustrate the notion of accountability constraints, let us continue the
example from above. Let α contain all runs in which the published election
result is incorrect, e.g., α = α(k, ϕ) = ¬γ(k, ϕ) with the goal γ(k, ϕ) as
defined in Section 2.3. Now, consider the following constraints:

C1 = α⇒ dis(B)|dis(T1)| · · · |dis(Tm),

C2 = α⇒ dis(V1) ∨ · · · ∨ dis(Vn) ∨ dis(B) ∨ (dis(T1) ∧ · · · ∧ dis(Tm)),

C3 = α⇒ dis(B)|dis(T1) ∧ · · · ∧ dis(Tm).

Constraint C1 requires that if in a run the published election result is incor-
rect, then at least one (individual) party among B,T1, . . . ,Tm can be held
accountable by the judge J; note that different parties can be blamed in dif-
ferent runs. Constraint C2 states that if the published election result is not
correct, then the judge J can leave it open whether one of the voters, the
bulletin board B, or all trustees misbehaved. Constraint C3 requires that it
is possible to hold B or all trustees accountable.

As pointed out in [KTV10b], accountability constraints should provide
at least individual accountability. That is, the postulated minimal verdicts
should at least single out one misbehaving party. In the above example, C1

and C3 provide individual accountability, but C2 does not. In fact, C2 is very
weak, too weak for practical purposes. If a judge states exactly this verdict,
there are no real consequences for any party, since no individual party can
be held accountable. This is particularly problematic if in such a “fuzzy”
verdict not only voting authorities are involved but also voters.

A set Φ of constraints for a protocol P is called an accountability property
of P . Typically, an accountability property Φ covers all relevant cases in
which a desired goal γ for P is not met, i.e., whenever γ is not satisfied in
a given run P due to some misbehavior of some protocol participant, then
there exists a constraint C in Φ which covers r. We write Pr (π(`) → ¬(J : Φ))
to denote the probability that π, with security parameter 1`, produces a run
r such that J does not satisfies all accountability constrains for this run, i.e.,
there exists C = (α⇒ ψ1| · · · |ψk) with r ∈ α but the judge outputs a verdict
which does not imply some ψi.

Definition 2 (Accountability). Let P be a protocol with the set of agents Σ.
Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and Φ be an accountability
property of P . Then, we say that the protocol P is (Φ, δ)-accountable by the
judge J if for all adversaries πA and π = (πP‖πA), the probability

Pr (π(`) → ¬(J : Φ))

34

is δ-bounded as a function of `.

Just as for the verifiability definition (Definition 1), the full definition
in [KTV10b] additionally requires that the judge J is fair, i.e., that she states
false verdicts only with negligible probability.

Küsters et al. also showed that verifiability (as defined in Definition 1)
can be considered to be a weak form of accountability, and, as mentioned
before, verifiability alone is typically too weak for practical purposes.

Instead of explicitly specifying Φ as necessary in the above definition,
there have been attempts to find generic ways to define who actually caused
a goal to fail and ideally to blame all of these parties. There has been work
pointing into this direction (see, e.g., [DGK+15, FJW11, GM15]). But this
problem turns out to be very tricky and has not been solved yet.

2.5 Privacy

In Section 2.5.1, we recapitulate the game-based privacy definition by Küsters
et al. [KTV11]. This definition allows us to measure the level of privacy a pro-
tocol provides, unlike other definitions (see, e.g., [BCG+15]). In Section 3.6
and 4.5, respectively, we use this definition to analyze the privacy level of
sElect and Ordinos.

In Section 2.5.2, we present the privacy level of an ideal voting protocol,
depending on different parameters (e.g., the number of voters or the specific
result function). These results are immediately relevant for our privacy anal-
yses of sElect and Ordinos as we will formally reduce their privacy levels to
the one of an ideal voting protocol (see Section 3.6 and 4.5 for details).

In Section 2.5.3, we provide some background on the relationship be-
tween privacy and coercion-resistance. We will demonstrate that coercion-
resistance is neither sufficient nor necessary for privacy. Since coercion-
resistance is not in the scope of this thesis,7 we discuss the relationship on a
high level without introducing the formal definition of coercion-resistance.

2.5.1 Privacy Definition

Intuitively, the privacy definition in [KTV11] says that no (ppt) observer,
who may control some parties, such as some authorities or voters, should be
able to tell how an honest voter, the voter under observation Vobs, voted.
More specifically, one considers two systems: in one system the voter under

7That is because (i) sElect and Ordinos have not been designed to provide coercion-
resistance, and (ii) Chapter 5 is only concerned with verifiability.

35

consideration votes for choice ch0 and in the other system the voter votes
for choice ch1; all other honest voters vote according to some probability
distribution known by the observer. Now, the probability that the observer
correctly says with which system he interacts should be bounded by some
constant δ (plus some negligible function in the security parameter). Due to
the parameter δ, the definition allows one to measure privacy.

As we will see in Section 3.6 and 4.5, this ability is crucial in the analysis of
protocols which provide a reasonable but not perfect level of privacy. In fact,
strictly speaking, most remote e-voting protocols do not provide a perfect
level of privacy: this is because there is always a certain probability that
voters do not check their receipts. Hence, the probability that malicious
servers/authorities drop or manipulate votes without being detected is non-
negligible. By dropping or manipulating votes, an adversaries obtains some
non-negligible advantage in breaking privacy. Therefore, it is essential to be
able to precisely tell how much an adversary can actually learn.

To define this notion formally, we first introduce the following notation.
Let P be an e-voting protocol (in the sense of Section 2.2 with voters, author-
ities, result function, etc.). Given a voter Vobs and ch ∈ C, we now consider
instances of P of the form (π̂Vobs

(ch)‖π∗‖πA) where π̂Vobs
(ch) is the honest

program of the voter Vobs under observation who takes ch as her choice, π∗

is the composition of programs of the remaining parties in P , and πA is the
program of the adversary. Typically, π∗ would include the scheduler, the
bulletin board, the authentication server, all other voters, and all trustees.

Let Pr[(π̂Vobs
(ch)‖π∗‖πA)(`) 7→ 1] denote the probability that the adversary

writes the output 1 on some dedicated channel in a run of (π̂Vobs
(ch)‖π∗‖πA)

with security parameter ` and some ch ∈ C, where the probability is taken
over the random coins used by the parties in (π̂Vobs

(ch)‖π∗‖πA).
Clearly, if an adversary (controlling the authentication server) drops all

votes except for the one of the voter under observation, privacy can easily
be broken. Therefore, the privacy definition is w.r.t. a mapping A which
maps an instance π of a protocol (excluding the adversary) to a set of ad-
missible adversaries. For sElect and Ordinos, for example, only adversaries
are admissible that drop/manipulate at most k votes of honest voters (see
Section 3.6 for details).

Definition 3 (Privacy). Let P be a voting protocol, Vobs be the voter under
observation, A be a mapping as explained above, and δ ∈ [0, 1]. We say that
P achieves δ-privacy (w.r.t. A), if∣∣∣Pr[(π̂Vobs

(ch0)‖π∗‖πA)(`) 7→ 1]− Pr[(π̂Vobs
(ch1)‖π∗‖πA)(`) 7→ 1]

∣∣∣
is δ-bounded as a function of the security parameter 1`, for π∗ as defined

36

above, for all choices ch0, ch1 ∈ C \ {abstain} and adversaries πA that are
admissible for π̂Vobs

(ch)‖π∗ for all possible choices ch ∈ C.8

The requirement ch0, ch1 6= abstain says that we allow the adversary to
distinguish whether or not a voter voted at all.

Since δ often depends on the number nhonest
voters of honest voters, privacy is

typically formulated w.r.t. this number: the bigger the number of honest
voters, the smaller δ should be, i.e., the higher the level of privacy. Note
that even for an ideal e-voting protocol, where voters privately enter their
votes and the adversary sees only the election outcome, consisting of the
number of votes per candidate say, δ cannot be 0: there may, for example,
be a non-negligible chance that all honest voters, including the voter under
observation, voted for the same candidate, in which case the adversary can
clearly see how the voter under observation voted. Hence, it is important
to also take into account the probability distribution used by the honest
voters to determine their choices; as already mentioned in Section 2.2, we
denote this distribution by µ. Moreover, the level of privacy, also of an ideal
voting protocol, will depend on the (possibly tally-hiding) result function, i.e.,
the information contained in the published result, as further investigated in
Section 2.5.2.

2.5.2 Privacy of the Ideal Protocol

As mentioned above, we will reduce the privacy level of sElect and Ordinos to
the privacy level of an ideal voting protocol. Therefore, in this section, we re-
capitulate the optimal privacy level for an ideal voting protocol. In [KTV11],
a formula for the optimal privacy level has been derived proven for the spe-
cific “classical” result function that reveals the total number of votes per
candidate. In [Ano18], these results have been generalized to arbitrary, in
particular tally-hiding, result functions (e.g., only revealing the winner).

As discussed in Section 2.5.1, the level δ of privacy is bigger than zero for
virtually every voting protocol, as some information is always leaked by the
result of the election. In order to have a lower bound on δ for all (possibly
tally-hiding) voting protocols, we now determine the optimal value of δ for
the ideal (tally-hiding) voting protocol.

The ideal voting protocol Ivoting(fres, µ, nvoters, n
honest
voters) is defined in Fig-

ure 2.1. In this protocol, honest voters pick their choices according to the
distribution µ. In every run, there are nhonest

voters many honest voters and nvoters

voters overall. The ideal protocol collects the votes of the honest voters and

8That is, πA ∈
⋂

ch∈CA(π̂Vobs
(ch)‖π∗).

37

the dishonest ones (where the latter ones are independent of the votes of the
honest voters) and outputs the result according to the result function fres.

Ivoting(fres, µ, nvoters, n
honest
voters)

Parameters:

• Function fres : {0, 1}∗ → {0, 1}∗

• Probability distribution µ over C

• Number of voters nvoters

• Number of honest voters nhonest
voters

• I ← ∅ (initially)

On (init, honest) from S do:

1. ∀i ∈ {1, . . . , nhonest
voters }: store chi ←µ C

2. I ← I ∪ {1, . . . , nhonest
voters }

3. Return success

On (setChoice, i, ch) from S do:

1. If i /∈ {nhonest
voters + 1, . . . , nvoters}, return ⊥.

2. If ch /∈ C, return ⊥.

3. Store chi ← ch

4. I ← I ∪ {i}

5. Return success

On (compute, b) from S do:

1. If b = 0, return ⊥.

2. Return res← fres((chi)i∈I)

Figure 2.1: Ideal privacy functionality for voting protocol.

We now formally analyze how the privacy level δideal
(nvoters,nhonest

voters ,µ)
(fres) of the

ideal voting protocol depends on the specific (tally-hiding) result function fres

38

in relation to the number of voters nvoters, the number of honest voters nhonest
voters ,

and the probability distribution µ according to which the honest voters select
their choices.

Recall that privacy is defined w.r.t. an honest voter, called the voter under
observation, for which the adversary has to decide whether this voter voted
for ch or ch′, for any choices ch0 and ch1.

Let Ach, ~R
y denote the probability that the choices made by the honest

voters yield the output y of the result function fres (e.g., only the winner of
the election or some ranking of the candidates), given that the voter under
observation picks choice ch ∈ C and the dishonest voters vote according the
choice vector ~R = (chi)i∈Idishonest . (Clearly, Ach, ~R

y depends on µ. However, we
omit this in the notation.) Furthermore, let Ach

~r denote the probability that
the choices made by the honest voters yield the choice vector ~r = (chi)i∈Ihonest
given that the voter under observation chooses choice ch. (Again, Ach

~r de-

pends on µ, which we omit in the notation.) In what follows, we write ~r+ ~R
to denote a vector of integers indicating the number of votes each choice in
C got according to ~r and ~R.

It is easy to see that

Ach, ~R
y =

∑
~r : fres(~r+~R)=y

Ach
~r

and

Ach
~r =

n!

r1! · · · rn!
· pr11 . . . prnn ·

rch
pch

where (p1, . . . , pn) is the probability distribution of the honest voters on the
possible choices C defined by µ, where now we simply enumerate all choices
and set C = {1, . . . , n}.

Moreover, let M∗
ch0,ch1, ~R

= {y : Ach0, ~R
y ≤ Ach1, ~R

y }. Now, the intuition be-

hind the definition of δideal
nvoters,nhonest

voters ,µ
(fres) is as follows: If the observer, given an

output y, wants to decide whether the observed voter voted for choice ch0 or
ch1, the best strategy of the observer is to opt for ch1 if y ∈ M∗

ch0,ch1, ~R
, i.e.,

the output is more likely if the voter voted for choice ch1. This leads to the
following definition:

δidealnvoters,nhonest
voters ,µ

(fres) = max
ch0,ch1∈C

max
~R

∑
y∈M∗

ch0,ch1,
~R

(Ach1, ~R
y − Ach0, ~R

y) (2.1)

The following theorem shows that δideal
nvoters,nhonest

voters ,µ
(fres) is indeed optimal

(see [Ano18] for the proof of the theorem).

39

Theorem 1 (Ideal Privacy). Let δideal
nvoters,nhonest

voters ,µ
(fres) be defined as above. Then,

the ideal protocol Ivoting(fres, nvoters, n
honest
voters , µ) achieves δideal

nvoters,nhonest
voters ,µ

(fres)-pri-

vacy. Moreover, it does not achieve δ′-privacy for any δ′ < δideal
nvoters,nhonest

voters ,µ
(fres).

2.5.3 Relationship to Coercion-Resistance

To achieve verifiability, a voter typically obtains some kind of receipt which,
together with additional data published in the election, she can use to check
that her vote was counted. This, however, potentially opens up the possibility
for vote buying and voter coercion. Besides verifiability, many voting systems
therefore also intend to provide so-called coercion-resistance.

One would expect that privacy and coercion-resistance are closely related:
If the level of privacy is low, i.e., there is a good chance of correctly determin-
ing how a voter voted, then this should give the coercer leverage to coerce
a voter. Some works in the literature (e.g., [MN06, DKR06]) indeed suggest
a close connection. However, Küsters et al. [KTV11] demonstrated that the
relationship between privacy and coercion-resistance is more subtle.

Among others, it turns out that improving the level of privacy of a proto-
col in a natural way (e.g., by changing the way honest voters fill out ballots)
can lead to a lower level of coercion-resistance. Clearly, in general, one does
not expect privacy to imply coercion-resistance. Still, the effect is quite sur-
prising.

A maybe even more important and unexpected finding that comes out of
the case studies in [KTV11] is that the level of privacy of a protocol can be
much lower than its level of coercion-resistance.

The reason behind this phenomenon is basically that it may happen that
the counter-strategy a coerced voter may carry out to defend against coercion
hides the behavior of the coerced voter, including her vote, better than the
honest voting program.

On the positive side, in [KTV11] Küsters et al. proved a theorem which
states that under a certain additional assumption a coercion-resistant pro-
tocol provides at least the same level of privacy. This is the case when the
counter-strategy does not “outperform” the honest voting program in the
above sense. The theorem is applicable to a broad class of voting protocols.

In what follows, we explain the subtle relationships between coercion-
resistance and privacy in more detail. The findings are based on the formal
privacy and coercion-resistance definitions originally proposed in [KTV11]
and [KTV10a, KTV12a], respectively (recall Section 2.5.1 for the formal
privacy definition). The definition of coercion-resistance is built upon the
same general protocol model as the one for verifiability and privacy, and

40

hence, it is applicable to all classes of voting systems. We only informally
introduce the coercion-resistance definition in what follows and point to the
reader to [KTV11, KTV10a, KTV12a] for the formal definition.

For the definition of coercion-resistance, the voter under observation con-
sidered for privacy is now replaced by a coerced voter and the observer is
replaced by the coercer. We imagine that the coercer demands full control
over the voting interface of the coerced users, i.e., the coercer wants the co-
erced voter to run a dummy strategy dum which simply forwards all messages
between the coerced voter and the coercer. If the coerced voter in fact runs
dum, the coercer can effectively vote on behalf of the coerced voter or decide
to abstain from voting. Of course, the coercer is not bound to follow the
specified voting procedure.

Now, informally speaking, a protocol is called coercion-resistant if the
coerced voter, instead of running the dummy strategy, can run some counter-
strategy such that (i) by running this counter-strategy, the coerced voter
achieves her own goal γ (formally, again a set of runs), e.g., successfully
votes for a specific candidate, and (ii) the coercer is not able to distinguish
whether the coerced voter followed his instructions (i.e., run dum) or tried to
achieve her own goal. Similarly to the privacy definition, the probability in
(ii) is bounded by some constant δ (plus some negligible function). Again,
δ is important in order to be able to measure the level of coercion-resistance
a protocol provides: there is always a non-negligible chance for the coercer
to know for sure whether the coerced voter followed his instructions or not
(e.g., when all voters voted for the same candidate).

Improving Privacy Can Lower the Level of Coercion-Resistance.
To illustrate this phenomenon, we consider the following variant of Three-
Ballot (for details of ThreeBallot see Section 2.3.3). An honest voter is
supposed to submit, according to her favorite candidate,

either

(
x
x

)
,

(
x
o

)
,

(
o
o

)
or

(
x
x

)
,

(
o
x

)
,

(
o
o

)
,

and always take the first single ballot

(
x
x

)
as her receipt. The scheme is ideal

in terms of privacy because the bulletin board and the receipts do not leak
any information apart from the pure election result. However, this scheme
does not provide any coercion-resistance. Assume that the coerced voter is
instructed to cast (

o
x

)
,

(
x
x

)
,

(
o
o

)
and take the first single ballot as receipt (which is allowed but never done by
honest voters). If the coerced voter actually wants to vote for candidate A,

41

the voter would have to cast(
o
x

)
,

(
x
o

)
,

(
x
o

)
.

But then, as all the honest voters submit(
x
x

)
,

(
x
o

)
,

(
o
o

)
or

(
x
x

)
,

(
o
x

)
,

(
o
o

)
,

the coercer could easily detect that he was cheated, by counting the number

of ballots of type

(
o
o

)
on the bulletin board.

Coercion-Resistance Does Not Imply Privacy. For the original variant
of ThreeBallot and the simple variant of VAV, Küsters et al. proved that
the level of privacy is much lower than its level of coercion-resistance. The
reason behind this phenomenon is basically that the counter-strategy hides
the behavior of the coerced voter, including her vote, better than the honest
voting program hides the vote. In these voting systems, a receipt an honest
voter obtains indeed discloses more information than necessary (for details
see [KTV11]).

The following simple, but unlike ThreeBallot and VAV, artificial example,
carries this effect to extremes: Consider the ideal voting protocol which
collects all votes and publishes the correct result. Now, imagine a voting
protocol in which voters use the ideal voting protocol to cast their vote, but
where half of the voters publish how they voted (e.g., based on a coin flip).
Clearly, the privacy level this protocol provides is very low, namely δ ≥ 1

2
.

However, a coerced voter can be more clever and simply lie about how she
voted. This protocol indeed provides a high level of coercion-resistance.

As mentioned at the beginning of this section, it is shown in [KTV11] that
if the counter-strategy does not “outperform” the honest voting program (or
conversely, the honest voting program does not leak more information than
the counter-strategy), then indeed if a voting system provides a certain level
of coercion-resistance, then it provides the same level of privacy. Fortu-
nately, in most systems which are supposed to provide coercion-resistance,
the counter-strategy indeed does not outperform the honest program.

42

Chapter 3

sElect: A Lightweight Verifiable
Remote E-Voting System

The design of practical remote e-voting systems is very challenging as many
aspects have to be considered. In particular, one has to find a good balance
between simplicity, usability and security. This in turn very much depends on
various, possibly even conflicting requirements and constraints, for example:
What kind of election is targeted? National political elections or elections
of much less importance and relevance, e.g., within clubs or associations?
Should one expect targeted and sophisticated attacks against voter devices
and/or servers, or are accidental programming errors the main threats to
the integrity of the election? Is it likely that voters are coerced, and hence,
should the system defend against coercion? How heterogeneous are the com-
puting platforms of voters? Can voters be expected to have/use a second
(trusted) device and/or install software? Is a simple verification procedure
important, e.g., for less technically inclined voters? Should the system be
easy to implement and deploy, e.g., depending on the background of the pro-
grammers? Should authorities and/or voters be able to understand (to some
extent) the inner workings of the system?

Therefore, there does not seem to exist a “one size fits all” remote e-voting
system. In this chapter, we are interested in systems for low-risk elections,
such as elections within clubs and associations, rather than national elections,
where—besides a reasonable level of security—simplicity and convenience are
important.

The goal of this chapter is to design a particularly lightweight remote
system which (still) achieves a good level of security. The system is supposed
to be lightweight both from a voter’s point of view and a design/complexity
point of view. For example, we do not want to require the voter to install
software or use a second device. Also, verification should be a very simple

43

procedure for a voter or should even be completely transparent to the voter.
We present a new, particularly lightweight remote e-voting system, called

sElect (secure and simple elections), for which we perform a detailed cryp-
tographic security analysis w.r.t. privacy of votes as well as verifiability and
accountability. sElect has also been implemented as a platform independent
web application.1 The system combines several concepts, such as verification
codes (see, e.g., [DLM82]) and Chaumian mix nets [Cha81], in a novel way.
sElect is not meant to defend against coercion and mostly tries to defend
against untrusted or malicious authorities, including inadvertent program-
ming errors or deliberate manipulation of servers, but excluding targeted
and sophisticated attacks against voters’ devices.

Overview. We start with an overview and discussion of the unique features
of sElect in Section 3.1. In Section 3.2, we describe how sElect works, and
then, in Section 3.3, we formally model sElect in the computation model
introduced in Section 2.2. In Sections 3.4 to 3.6, we analyze verifiability, ac-
countability, and privacy of sElect, with full proofs provided in Appendix C.
In Section 3.7, we describe our implementation of sElect. We close this chap-
ter with a discussion of related work in Section 3.8.

3.1 Features and Limitations

We sketch the main characteristics of sElect, including several novel and
unique features and concepts which should be beneficial also for other sys-
tems. We also provide a general discussion on sElect, including its limita-
tions.

Fully automated verification. One of the important unique features of
sElect is that it supports fully automated verification. This kind of verifi-
cation is carried out by the voter’s browser. It does not require any voter
interaction and is triggered as soon as a voter looks at the election result.
This is meant to increase verification rates and ease the user experience. As
voters are typically interested in the election results, combining the (fully au-
tomated) verification process with the act of looking at the election result in
fact appears to be an effective way to increase verification rates as indicated
by two small mock elections we performed with sElect (see Section 3.7). In a
user study carried out in [AKBW14] for various voting systems, automated
verification was pointed out to be lacking in the studied systems, including,
for example, Helios. It seems that our approach of automated verification
should be applicable and can be very useful for other remote e-voting systems,

1The implementation of sElect is covered in the Ph.D. thesis by Scapin [Sca18].

44

such as Helios, as well. Another important aspect of the automated verifi-
cation procedure of sElect is that it performs certain cryptographic checks
and, if a problem is discovered, it singles out a specific misbehaving party
and produces binding evidence of the misbehavior. This provides a high level
of accountability and deters potentially dishonest voting authorities.

Obviously, for fully automated verification we need to assume that (most
of) the VSDs can be trusted. In Section 3.7, we will describe that in our
implementation of sElect a VSD consists of the voter’s computing platform
(hardware, operating system, browser) and the voting booth (server), where
the idea is that the voter can choose a voting booth she trusts among a set
of voting booths.

Voter-based verification (human verifiability). Besides fully auto-
mated verification, sElect also supports a very easy to understand manual
verification procedure: a voter can check whether a verification code she has
chosen herself when casting her vote appears in the election result along with
her choice. This simple procedure has several obvious benefits:

• It reduces trust assumptions concerning the voter’s computing platform
(for fully automated verification the voter’s computing platforms needs
to be fully trusted). With voter-based verification the voter does not
have to trust any device or party, except that she should be able to
look up the actual election outcome on a bulletin board, in order to
make sure that her vote was counted (see also below). In particular,
she does not have to trust the voting booth (she chose) at all, which is
one part of her VSD.

• Also voters can easily grasp the procedure and its purpose, essentially
without any understanding of the rest of the system, which should help
to increase user satisfaction and verification rates. In other systems,
such as Helios, voters have to have trust in the system designers and
cryptographic experts in the following sense: when their ballots ap-
pear on the bulletin board, then some universally verifiable tallying
mechanism—which, however, a regular voter does not understand—
guarantees that her vote is actually counted. Also, other systems re-
quire the voter to perform much more complex and cumbersome actions
for verifiability and they typically assume a second trusted device in
order to carry out the cryptographic checks, which altogether often
discourages voters from performing these actions in the first place.2

2For example, Helios demands voters (i) to perform Benaloh challenges and (ii) to check
whether their ballots appear on the bulletin board. However, regular voters often have
difficulties understanding these verification mechanisms and their purposes, as indicated

45

On the negative side, verification codes could be easily misused for coer-
cion. A voter could (be forced to) provide a coercer with her verification code
before the election result is published, and hence, once the result is published,
a coercer can see how the voter voted. A mitigation for this problem has been
considered in the Selene protocol [RRI16], but this approach assumes, among
others, a public-key infrastructure for all voters. We note, however, that in
any case, for most practical remote e-voting systems, including sElect and,
for instance, Helios, there are also other simple, although perhaps not as
simple, methods for coercion. Depending on the exact deployment of these
systems, a coercer might, for example, ask for the credentials of voters, and
hence, simply vote in their name. Also, voters might be asked/forced to cast
their votes via a (malicious) web site provided by the coercer, or the coercer
asks voters to run a specific software. So, altogether preventing coercion
resistance is extremely hard to achieve in practice, and even more so if, in
addition, the system should still be simple and usable. This is one reason
that coercion-resistance was not a design goal for sElect.

Furthermore, since sElect employs Chaumian mix nets (see Section 3.2),
a single server could refuse to perform its task, and hence, block the tallying.
Clearly, those servers who deny their service could be blamed, which in many
practical situations should deter them from misbehaving. Therefore, for low-
risk elections targeted in this work, we do not think that such a misbehavior
of mix servers is a critical threat in practice. Other systems use different
cryptographic constructions to avoid this problem, namely, threshold schemes
for distributed decryption and (universally verifiable) reencryption mix nets.

Simple cryptography and design. Unlike other modern remote voting
systems, sElect uses only the most basic cryptographic operations, namely,
public key encryption and digital signatures. And, as can been seen from
Section 3.2, the overall design and structure of sElect is simple as well. In
particular, sElect does not rely on any more sophisticated cryptographic
operations, such as zero-knowledge proofs, verifiable distributed decryption,
universally verifiable mix nets, etc. Our motivation for this design choice
is twofold. Firstly, we wanted to investigate what level of security (privacy,
verifiability, and accountability) can be obtained with only the most basic

by several usability studies (see, e.g., [AKBW14, KOKV11, KKO+11, NORV14, OBV13,
WH]). Therefore, many voters are not motivated to perform the verification, and even if
they attempt to verify, they often fail to do so. Furthermore, the verification process, in
particular the Benaloh challenge, is quite cumbersome in that the voter has to copy/paste
the ballot (a long randomly looking string) to another, then trusted, device in which
cryptographic operations need to be performed. If this is done at all, it is often done
merely in a different browser window (which assumes that the voter’s platform and the
JavaScript in the other window is trusted), instead of a different platform.

46

cryptographic primitives (public-key encryption and digital signatures) and
a simple and user-friendly design, see also below. Secondly, using only the
most basic cryptographic primitives has several advantages:

• The implementation can use standard cryptographic libraries and does
not need much expertise on the programmers side. In fact, simplicity
of the design and implementation task is valuable in practice in order
to avoid programming errors, as, for example, noted in [AKBW14].

• The implementation of sElect is also quite efficient (see Section 3.2).

• sElect does not rely on setup assumptions. In particular, unlike other
remote voting systems, we do not need to assume common reference
strings (CRSs) or random oracles.3 We note that in [KZZ15b, KZZ15a]
very complex non-remote voting systems were recently proposed to
obtain security without such assumptions.

• Post-quantum cryptography could easily be used with sElect, because
one could employ appropriate public key encryption schemes and sig-
nature schemes.

• In sElect, the space of voters’ choices can be arbitrarily complex since,
if hybrid encryption is employed, arbitrary bit strings can be used to
encode voters’ choices; for systems that use homomorphic tallying (such
as Helios) this is typically more tricky, and requires to adjust the system
(such as certain zero-knowledge proofs) to the specific requirements.

On the downside, with such a very simple design one does not achieve
certain properties one can obtain with more advanced constructions. For
example, sElect, unlike for instance Helios, does not provide universal verifi-
ability (by employing, for example, verifiable distributed decryption or uni-
versally verifiable mix nets). Universal verifiability can offer more robustness
as it allows one to check (typically by verifying zero-knowledge proofs) that
all ballots on the bulletin board are counted correctly. Every voter still has
to check, of course, that her ballot appears on the bulletin board and that it
actually contains her choice (cast-as-intended and individual verifiability).

Rigorous cryptographic security analysis. We perform a rigorous cryp-
tographic analysis of sElect w.r.t. end-to-end verifiability, accountability, and
privacy. Since quite rarely implementations of practical e-voting systems

3We note that the underlying cryptographic primitives, i.e., the public key encryption
scheme and the signature scheme, might use a random oracle, depending on the schemes
employed.

47

come with a rigorous cryptographic analysis, this is a valuable feature by
itself. Our cryptographic analysis, carried out in Sections 3.4 and 3.6, shows
that sElect enjoys a good level of security, given the very basic cryptographic
primitives it uses. Remarkably, the standard technique for achieving (some
level of) end-to-end verifiability is to establish both so-called individual and
universal verifiability.4 In contrast, sElect demonstrates that one can achieve
(a certain level of) end-to-end verifiability, as well as accountability, without
universal verifiability. This is interesting from a conceptual point of view and
may lead to further new applications and system designs.

Summary. Altogether, sElect is a remote e-voting system for low-risk elec-
tions which provides a new balance between simplicity, usability, and security,
emphasizing simplicity and usability, and by this, presents a new option for
remote e-voting. Also, some of its new features, such as fully automated
verification and triggering verification when looking up the election result,
could be used to improve other systems, such as Helios, and lead to further
developments and system designs.

As mentioned above, we assume low-risk elections (e.g., elections in clubs
and associations) where we do not expect targeted and sophisticated at-
tacks against voters’ computing platforms.5 Also, as we will describe in Sec-
tion 3.7, the idea is that several voting booth services are available, possibly
provided by different organizations and independently of specific elections,
among which a voter can choose one she trusts. So, for low-risk elections it is
reasonable to assume that VSDs are trusted. In addition, voter-based verifi-
cation provides some mitigation for dishonest VSDs (see also the discussion
above and our analysis in Section 3.4).

Structure of the chapter. In Section 3.2, we describe sElect in detail
on a conceptual level. Verifiability, accountability, and privacy of sElect are
then analyzed in Sections 3.4 to 3.6, respectively, based on the model of
sElect provided in Section 3.3. Details of our implementation of sElect are
presented in Section 3.7, with a detailed discussion of related work provided
in Section 3.8.

4As pointed out in Section 2.3.2, this combination does not guarantee end-to-end veri-
fiability, though.

5For high-stake elections, such as national elections, untrusted VSD are certainly a
real concern. This is in fact a highly non-trivial problem which has not been solved
satisfactorily so far when both security and usability are taken into account (see, e.g.,
[GRCC15]).

48

3.2 Description

In this section, we present the sElect voting system on the conceptual level.
Its implementation is described in Section 3.7.

Cryptographic primitives. sElect uses only basic cryptographic oper-
ations: public-key encryption and digital signatures. More specifically, the
security of sElect is guaranteed for any IND-CCA2-secure public-key encryp-
tion scheme6 and any EU-CMA-secure signature scheme, and hence, very
standard and basic cryptographic assumptions. Typically, the public-key
encryption scheme will employ hybrid encryption so that arbitrarily long
messages and voter choices can be encrypted.

To simplify the protocol description, we use the following convention.
Whenever we say that a party computes a signature on some message m, this
implicitly means that the signature is computed on the tuple (idelection, tag,m)
where idelection is an election identifier (different for different elections) and
tag is a tag different for signatures with different purposes (for example, a
signature on a list of voters uses a different tag than a signature on a list
of ballots). Similarly, every message encrypted by a protocol participant
contains the election identifier.

Set of participants. The set of participants of the protocol consists of
an append-only bulletin board B, nvoters voters V1, . . . ,Vnvoters and their voter
supporting devices VSD1, . . . ,VSDnvoters , an authentication server AS, nservers

mix servers M1, . . . ,Mnservers , and a voting authority Auth. For sElect, a VSD
is simply the voter’s browser (and the computing platform the browser runs
on).

We assume that there are authenticated channels from each VSD to the
authentication server AS. These channels allow the authentication server to
ensure that only eligible voters are able to cast their ballots. By assuming
such authenticated channels, we abstract away from the exact method the
VSDs use to authenticate to the authentication server; in practice, several
methods can be used, such as one-time codes, passwords, or external authen-
tication services.

We also assume that for each VSD there is one (mutual) authenticated
and one anonymous channel to the bulletin board B (see below for details).
Depending on the phase, the VSD can decide which channel to use in order
to post information on the bulletin board B. In particular, if something went
wrong, the VSD might want to complain anonymously (e.g., via a proxy) by

6For the privacy property of sElect, we require that the public-key encryption scheme
for every public-key and any two plaintexts of the same length always yields ciphertexts
of the same length. This seems to be satisfied by all practical schemes.

49

posting data on the bulletin board B that identifies the misbehaving party.
A protocol run consists of the following phases: the setup phase (where

the parameters and public keys are fixed), the voting phase (where voters
choose their candidate and let their VSDs create and submit the ballots),
the mixing phase (where the mix servers shuffle and decrypt the election
data), and the verification phase (where the voters verify that their ballots
were counted correctly). These phases are now described in more detail.

Setup phase. In this phase, all the election parameters (the election identi-
fier, list of candidates, list of eligible voters, opening and closing times, etc.)
are fixed and posted on the bulletin board by Auth.

Every server (i.e., every mix server and the authentication server) runs
the key generation algorithm of the digital signature scheme to generate its
public/private (verification/signing) keys. Also, every mix server Mj runs
the key generation algorithm of the encryption scheme to generate its pub-
lic/private (encryption/decryption) key pair (pkj, skj). The public keys of
the servers (both encryption and verification keys) are then posted on the
bulletin board B; proofs of possession of the corresponding private keys are
not required.

Voting phase. In this phase, every voter Vi can decide to abstain from vot-
ing or to vote for some candidate candi. In the latter case, the voter indicates
her candidate candi to the VSD. In addition, for verification purposes, a ver-
ification code codei is generated (see below), which the voter is supposed to
write down/store. At the end of the election, the candidate/verification code
pairs of all voters who cast a vote are supposed to be published so that every
voter can check that her candidate/verification code pair appears in the final
result, and hence, that her vote was actually counted. The verification code
is a concatenation codei = codevoteri ‖codevsdi of two nonces. The first nonce,
codevoteri , which we call the voter chosen nonce, is provided by the voter her-
self, who is supposed to enter it into her VSD (in our implementation, see
Section 3.7, this nonce is a nine character string chosen by the voter). For
verifiability, it is not necessary that these nonces are chosen uniformly at
random. What matters is only that it is sufficiently unlikely that different
voters choose the same nonce. The second nonce, codevsdi , is generated by the
VSD itself, the VSD generated nonce. Now, when the verification code is de-
termined, the VSD encrypts the voter’s candidate candi and the verification
code codei, i.e., the candidate/verification code pair αinservers

= (candi, codei),
under the last mix server’s public key pknservers

using random coins rinservers
,

resulting in the ciphertext

αinservers−1 = Enc(pknservers
, (candi, codei); r

i
nservers

).

50

Then, the VSD encrypts αinservers−1 under pknservers−1 using the random coins
rinservers−1, resulting in the ciphertext

αinservers−2 = Enc(pknservers−1, (candi, codei); r
i
nservers−1),

and so on. In the last step, it obtains

αi0 = Enc(pk1, . . .Enc(pknservers
, (candi, codei); r

i
nservers

) . . . ; ri1).

The VSD submits αi0 as Vi’s ballot to the authentication server AS on an
authenticated channel. If the authentication server receives a ballot in the
correct format (i.e., the ballot is tagged with the correct election identifier),
then AS responds with an acknowledgement consisting of a signature on the
ballot αi0; otherwise, it does not output anything. If the voter/VSD tried to
re-vote and AS already sent out an acknowledgement, then AS returns the
old acknowledgement only and does not take into account the new vote.

If a VSD does not receive a correct acknowledgement from the authenti-
cation server AS, the VSD tries to re-vote, and, if this does not succeed, it
files a complaint on the bulletin board using the authenticated channel. If
such a complaint is posted, it is in general impossible to resolve the dispute
and decide who is to be blamed: AS who might not have replied as expected
(but claims, for instance, that the ballot was not cast) or the VSD who might
not have cast a ballot but nevertheless claims that she has. Note that this is
a very general problem which applies to virtually any remote voting protocol.
In practice, the voter could ask the VA to resolve the problem.

When the voting phase is over, AS publishes two lists on the bulletin
board, both in lexicographic order and without duplicates and both signed
by the authenticated server: the list ~b containing all the cast valid ballots
and the list ~id containing the identifiers of all voters who cast a valid ballot.
It is expected that the list ~id is at least as long as ~b (otherwise AS will be
blamed for misbehavior).

Mixing phase. The list of ciphertexts ~c0 = ~b posted by the authentication
server is the input to the first mix server M1, which processes ~c0, as described
below, and posts its signed output ~c1 on the bulletin board. This output is
the input to the next mix server M1, and so on. We will denote the input
to the j-th mix server by Mj−1 and its output by Mj. The output ~cnservers of
the last mix server Mnservers is the output of the mixing stage and, at the same
time, the output of the election. It is supposed to contain the plaintexts
(cand1, code1), . . . , (candnvoters , codenvoters) (containing voters’ candidates along
with their verification codes) in lexicographic order.

The steps taken by a mix server Mj are as follows:

51

1. Input validation. Mj checks whether ~cj−1 has the correct format, is
correctly signed, arranged in lexicographic order, and does not contain
any duplicates. If this is not the case, it sends a complaint to the bul-
letin board and stops its process (this in fact aborts the whole election
process and the previous server is blamed for misbehaving). Otherwise,
Mj continues with the second step.

2. Processing. Mj decrypts all entries of ~cj−1 under its private key skj,
removes duplicates, and orders the result lexicographically. If an entry
in ~cj−1 cannot be decrypted or is decrypted to a message in an unex-
pected format, then this entry is discarded and not further processed.
The sequence of messages obtained in such a way is then signed by Mj

and posted on the bulletin board as the output ~cj.

Verification phase. After the final result ~cnservers has been published on
the bulletin board B, the verification phase starts. As mentioned in the
introduction, a unique feature of sElect is that it supports the following
two forms of verification, explained next: (pure) voter-based verification, and
hence human verifiability, and (fully automated) VSD-based verification.

The first form is carried out by the voter herself and does not require any
other party or any device, and in particular, it does not require any trust in
any other party or device, except that the voter needs to be able to see the
published result on the bulletin board. As we will see below, the verification
procedure is very simple. As proven in Section 3.4, voter-based verification
ensures verifiability even in the threat scenario that all VSDs are corrupted.

VSD-based verification is carried out fully automatically by the voter’s
VSD and triggered automatically as soon as the voter takes a look at the final
result, as further explained in Section 3.7. It does not need any input from
the voter. This is supposed to result in high verification rates and further ease
the user experience, as verification is performed seamlessly from the voter’s
point of view and triggered automatically. Under the assumption that VSDs
are honest, it yields verifiability, and even a high-level of accountability (see
Section 3.5).

We now describe how these two forms of verification work in detail.

Voter-based verification. For voter-based verification, the voter simply
checks whether her verification code, which in particular includes the voter
chosen nonce codevoteri , appears next to her candidate in the final result list.

If this is the case, the voter would be convinced that her vote was counted
(see also Section 3.4). A voter Vi who decided to abstain from voting may

check the list ~id to make sure that her name (identifier) is not listed there.7

7Variants of the protocol are conceivable where a voter signs her ballot and the authen-

52

When checks fail, the voter would file a complaint.

VSD-based verification. For VSD-based verification, the voter’s VSD
performs the verification process fully automatically. In particular, this does
not require any action or input from the user. In our implementation, as fur-
ther explained in Section 3.7, the VSD-based verification process is triggered
automatically whenever the voter goes to see the election result. Clearly,
this kind of verification provides security guarantees only if the VSD is hon-
est, and hence, for this kind of verification, the voter needs to trust her
device. Making use of the information available to the VSD, the VSD can
provide evidence if servers misbehaved, which can then be used to rightfully
blame misbehaving parties. The VSD-based verification process works as fol-
lows. VSDi checks whether the originally submitted plaintext (candi, codei)
appears in ~cnservers . If this is not the case, the VSD determines the misbe-
having party, as described below. Recall that a VSD which did not obtain
a valid acknowledgment from the authenticating server was supposed to file
a complaint already in the voting phase. The following procedure is carried
out by VSDi which obtained such an acknowledgement and cannot find the
plaintext (candi, codei) in ~cnservers . First, VSDi checks whether the ballot αi0
is listed in the published result ~c0 of the authentication server AS. If this
is not the case, VSDi anonymously publishes the acknowledgement obtained
from AS on the bulletin board B which proves that AS misbehaved (recall
that such an acknowledgement contains a signature of AS on the ballot αi0).
Otherwise, i.e., if αi0 is in ~c0, the VSD checks whether αi1 is listed in the
published result ~c1 of the first mix server M1. If ~c1 contains αi1, VSDi checks
whether αi2 can be found in the published result ~c2 of the second mix server
M2, and so on. As soon as VSDi gets to the first mix server Mj which pub-
lished a result ~cj that does not contain αij (such a mix server has to exist),
the VSD anonymously sends (j, αij, r

i
j) to the bulletin board B. This triple

demonstrates that Mj misbehaved: the encryption of αij under pkj with ran-
domness rij yields αij−1, and hence, since αij−1 is in the input to Mj, α

i
j should

have been in Mj’s output, which, however, is not the case. The reason that
an anonymous channel is necessary to submit the triple is the fact that it
might reveal how the voter voted, for example, if Mj is the last mix server
and thus αij contains the voter’s candidate as a plaintext. In practice, the
voter could, for example, use a trusted proxy server, the Tor network, or
some anonymous e-mail service.

tication server presents such a signature in case of a dispute. This solution is conceptually
simple. On the pragmatic side, however, it is not always reasonable to expect that voters
maintain keys and, therefore, here we consider the simpler variant without signatures.
Note that this design choice was also made in several existing and prominent systems,
such as Helios.

53

We say that a voter Vi accepts the result of an election if neither the
voter Vi nor VSDi output a complaint. Otherwise, we say that Vi rejects the
result.

Remark 2. Note that the procedures for ballot casting and mixing are very
simple. In particular, a mix server needs to carry out only nvoters decryptions.
Using standard hybrid encryption based on RSA and AES, it amounts to
nvoters RSA decryption steps (nvoters modular exponentiations) and nvoters AES
decryptions. This means that the mixing step is very efficient and the system
is practical even for very big elections: mixing 100000 ballots takes about
3 minutes and mixing one million ballots takes less than 30 minutes with
2048-bit RSA keys on a standard computer/laptop.

Remark 3. Observe that the VSD-based verification technique cannot be
applied to a re-encryption mix net because the VSD would not know the trace
of its input ciphertext through the re-encryption mix net. Therefore, this
technique can only be applied to Chaumian/decryption mix nets, as described
above.

3.3 Formal Protocol Model

The sElect system can be modeled in a straightforward way as a protocol
PsElect(nvoters, nservers, µ, p

vote
verif , p

vsd
verif , p

abst
verif , fsElect) in the above sense, as detailed

next.

• By nvoters we denote the number of voters and their voter supporting
devices, and by nservers the number of mix servers.

• By µ we denote a probability distribution on the set of choices, includ-
ing abstention. An honest voter makes her choice according to this
distribution.8 Note that the set of valid choices is implicitly given by
µ. The set of valid choices C in sElect is the product space of the set
of candidates and the set of possible voter verification codes, including
abstention. We assume that the choices are represented by messages
of the same length. The choice provided by the voter to her VSD is
called the actual choice of the voter.

• By pvoteverif ∈ [0, 1] we denote the probability that an honest voter who
does not abstain from voting verifies the result, i.e., performs the voter-
based verification procedure.

8This in particular models that adversaries know this distribution. In reality, the
adversary might not know this distribution precisely. This, however, makes our security
results only stronger.

54

• By pvsdverif ∈ [0, 1] we denote the probability that an honest VSD of a
voter who does not abstain from voting is triggered to verify the result.

• By pabstverif ∈ [0, 1] we denote the probability that an honest voter who

abstains from voting verifies that her name is not listed in the list ~id
output by the authentication server.

• By fsElect we denote the result function of sElect which takes as input
a list of valid choices, i.e., pairs of the form (cand, codevoter) or abstain,
and outputs the same list in lexicographic order.

The set of agents of PsElect consists of all agents described in Section 3.2,
i.e., the bulletin board B, the voters V1, . . . ,Vnvoters and their VSDs VSD1, . . . ,
VSDnvoters , the authentication servers AS, the mix servers M1, . . . ,Mnservers , and
in addition, a scheduler S. The latter party will play the role of the vot-
ing authority Auth and schedule all other agents in a run according to the
protocol phases. Also, it will be the master program in every instance of
PsElect. All agents are connected via channels with all other agents; honest
agents will not use all of these channels, but dishonest agents might. The
honest programs of all agents are defined in the obvious way according to the
description of the agents in Section 3.2 (see below for details). We assume
that the scheduler and the bulletin board are honest. All other agents can
possibly be dishonest and run any probabilistic polynomial-time program.
We note that the scheduler is only a modeling tool. It does not exist in
real systems. The assumption that the bulletin board is honest is common;
Helios makes this assumption too, for example (see also Section 3.1). In
addition to the participants listed above, we also have a judge J in order to
model/analyze verifiability and accountability of sElect (recall Section 2.3
for details on verifiability).

Next, we describe the honest program of every agent a in PsElect.

Scheduler S. In every instance of PsElect, the scheduler S plays the role
of the master program (in the sense of Section 2.2). We assume that it is
given information about which agents are honest and which are dishonest
in order to be able to schedule the agents in the appropriate way. In what
follows, we implicitly assume that the scheduler triggers the adversary (any
dishonest party) at the beginning of the protocol run and at the end of this
run. Also, the adversary is triggered each time an honest party finishes its
computations (after being triggered by the scheduler in some protocol step).
This keeps the adversary up to date and allows it to output its decision at the
end of the run. By this, we obtain stronger security guarantees. Similarly,
we assume that the judge is triggered each time any other party (honest or
dishonest) finishes its computation (after being triggered by the scheduler).

55

This gives the judge the chance to output its verdict after each protocol step.
If the judge posts a message on the bulletin board B which indicates to stop
the whole protocol (see Section 3.5), then the scheduler triggers once more
the adversary (to allow it to output its decision) and then halts the whole
system. This means that no participants are further triggered.

In the remaining part of the section, we precisely describe the honest
program of the scheduler depending on the voting phase.

Scheduling the setup phase. At the beginning of the election, the sched-
uler generates a random number id, the election identifier, with the length
of the security parameter ` and sends it to the bulletin board B which pub-
lishes id. After that, the scheduler first triggers all the honest servers, which
are supposed to generate their signing/verification key pairs and publish the
public (verification) keys on the bulletin board B, and then all the dishonest
ones. The analogous process is carried out for generation and publishing of
encryption keys.

Scheduling the voting phase. The scheduler first triggers all the honest
voters and then the dishonest ones, allowing them to cast their ballots to the
authentication server AS using their VSDs. After each such step (when the
computations of a voter, her VSD and the authentication server are finished),
the scheduler triggers the VSD again, to allow the VSD to post a complaint,
if it does not get a valid acknowledgment from the authentication server.
Recall that the authentication server AS is modeled in such a way that it
provides all collected ballots (even before AS publishes them on the bulletin
board B) to an arbitrary participant who requests these ballots. Afterwards,
the scheduler triggers the authentication server which is supposed to publish
the lists ~id (containing the names of those eligible voters who cast a valid
ballot) and the list ~c0 (containing the (first) valid ballot cast by each eligible
voter) on the bulletin board B.

Scheduling the mixing phase. In this phase, the scheduler triggers all
the mix servers, from M1 to Mnservers (recall that the judge and the adversary
are triggered after each such step).

Scheduling the verification phase. Similar to the voting phase, the
scheduler triggers first the honest voters and their VSDs who are supposed
to verify the result. Recall that, if a voter abstained, she is supposed to
verify with probability pabstverif whether her name appears in the list ~id, and,
if this is not the case, to file a complaint as described in the description
(Section 3.2). If the voter did not abstain, she and her VSD are supposed
to verify with probability pvoteverif and pvsdverif , respectively, whether the voter’s
submitted choice appears in the final result ~cnservers , and, if this is not the case,
to file a complaint as described in the description, (Section 3.2). Afterwards,

56

the scheduler triggers all the dishonest voters.

Bulletin board B. Running its honest program, the bulletin board B
accepts messages from all agents. If the bulletin board B receives a message
via an authenticated channel, it stores the message in a list along with the
identifier of the agent who posted the message. Otherwise, if the message is
sent anonymously, it only stores the message. On request, the bulletin board
sends its stored content to the requesting agent.

Voter Vi. A voter Vi, when triggered by the scheduler in the voting phase,
picks a candidate-code pair (candi, code

voter
i) according to the probability

distribution µ. A choice may be either a distinct value abstain, which ex-
presses abstention from voting, or a real choice. If chi = abstain, then the
voter program stops. Otherwise, if chi is a real choice, the program sends
chi = (candi, code

voter
i) to her voter supporting device VSDi. The voter Vi,

when triggered by the scheduler in the verification phase, carries out the fol-
lowing steps, depending on whether her choice chi was abstain or not. If chi
was abstain, the voter, with probability pabstverif , verifies that her name is not

listed in the list ~id of names output by the authentication server. She files a
complaint if this is not the case, as described in Section 3.2. If chi 6= abstain,
the voter, with probability pvoteverif , follows the verification procedure to check
that her candidate/verification code-pair is listed in the final result. If this
is not the case, she files a complaint as described in Section 3.2.

Voter supporting device VSDi. When the voter supporting device VSDi

receives a tuple ch = (cand, codevoter) by Vi, it produces and casts a ballot
as described in Section 3.2. The voter supporting device expects to get back
an acknowledgement (a signature of AS on the submitted ballot). When
this happens, the voter supporting device verifies the acknowledgement. If
the acknowledgement is incorrect, the voter supporting device posts a com-
plaint on the bulletin board via her authenticated channel. Note that the
program of the voter supporting device may not get any response from AS
in case AS is dishonest. To enable the voter supporting device in this case
to post a complaint on the bulletin board, the scheduler triggers the voter
supporting device again (still in the voting phase). The voter supporting de-
vice VSDi, when triggered by the scheduler in the verification phase, carries
out the following steps. If it did not receive an input by Vi in the vot-
ing phase, its program stops. Otherwise, the voter supporting device, with
probability pvsdverif , follows the verification procedure to check that Vi’s candi-
date/verification code-pair is listed in the final result. If this is not the case,
it files a complaint as described in Section 3.2.

Authentication server AS. The honest authentication server AS carries
out the steps described in Section 3.2, with one additional step: when AS

57

is asked for the ballots of the voters, AS provides all ballots collected so far
to the requester (even before AS published them on B). This models the
assumption that the channel from the voter to AS is authenticated, but does
not necessarily provide secrecy.

Mix server Mj. The honest program of Mj carries out the procedure
described in Section 3.2.

Judge J. The honest program of J carries out the following procedure.
We note that this program, as defined below, uses only the publicly available
information, and therefore every party, including the voters as well as external
observers, can run the judging procedure. The judge J, whenever triggered by
the scheduler, reads data from the bulletin board and verifies its correctness,
including correctness of posted complaints. The judge outputs its verdicts
(as described below) on a distinct tape. More precisely, the judge outputs
verdicts in the following situations:

(J1) If a server S does not publish data when expected or the published data
is not in the expected format, this server is blamed by the judge, i.e.,
the judge outputs the verdict dis(S), and the whole election process is
halted.

(J2) If a voter Vi posts an authenticated complaint in the voting phase that
the authentication server has not responded with a valid acknowledge-
ment, then the judge outputs the verdict dis(Vi)∨dis(AS), which means
that (the judge believes that) either Vi or AS is dishonest but cannot
determine which of them.

(J3) If a voter Vi posts an authenticated complaint claiming that she did
not vote, but her name was posted by the authentication server, the
judge outputs the verdict dis(Vi) ∨ dis(AS).

(J4) If, in the verification phase, a valid complaint is posted containing an
acknowledgement of AS, i.e., the complaint contains a signature of AS
on a ballot α, while α is not listed in the output ~c0 of AS, then the
judge blames AS outputting the verdict dis(AS).

(J5) If, in the verification phase, a valid complaint of the form (j, α, r) is
(anonymously) posted, i.e., Encrpkj(α) is in ~cj−1, but α is not in ~cj, then

the judge blames Mj outputting the verdict dis(Mj).

58

3.4 Verifiability

In this section, we formally establish the level of verifiability provided by
sElect. We show that sElect enjoys a good level of verifiability based on the
generic definition of end-to-end verifiability presented in Section 2.3.2.9 Im-
portantly, verifiability is ensured without having to trust any of the VSDs,
mix servers, or voting authorities. Verifiability is provided by the simple
voter-based verification mechanism (human verifiability), and the only as-
sumption we have to make is that each voter has access to the final result in
order to check whether her voter-generated verification code appears next to
her chosen candidate (see also the discussion in Section 3.1).

The verifiability level of sElect depends on whether or not clashes occur,
i.e., whether two or more honest voters chose the same pair (cand, codevoter).
We denote the probability of having at least one clash by pclash and define
pnoclash = 1 − pclash. Under certain conditions, clashes allow collaborating
malicious participants, such as the VSDs or the servers, to drop the vote of
one of the affected honest voters and replace it by a different vote without
being detected: If two honest voters happened to choose the same voter
chosen nonce and vote for the same candidate and the VSDs of both voters are
malicious, the adversary (controlling both VSDs) could inject another vote
by making sure that the two honest voters obtain the same choice/verification
code pairs. The adversary can then just output one such pair in the final
result list, and hence, he could possibly inject another choice/verification
code. Such attacks are called clash attacks [KTV12b].

We now state the verifiability level provided by sElect. Recall that pvoteverif

denotes the probability that an honest voter who does not abstain from voting
verifies the final result, and that pabstverif denotes the probability that an honest
voter who abstains from voting verifies that her name is not listed in the list
~id output by the authentication server.

As mentioned above, we use the generic end-to-end verifiability definition
presented in Section 2.3.2 which is an instantiation of the generic verifiability
definition (Definition 1) with the goal γ(k, ϕ). Recall that, roughly speaking,
the goal γ(k, ϕ) is the set of protocol runs in which the distance between the
“real” input (where choices of honest voters are possibly manipulated by the
adversary) and the “ideal” input to the voting protocol is bounded by k under
the assumption that ϕ holds true. More precisely, the distance increases by
1 if an honest voter’s choice is dropped and by 2 if it is changed to a different
choice (excluding abstain). In the case of sElect, we merely have to assume

9In [KMST16a], verifiability of sElect has been analyzed w.r.t. the goal γk (Section 5.2),
while in this thesis, we use the refined goal γ(k, ϕ) (Section 2.3.2) to analyze verifiability.
For the reasons, see Section 5.2.3.

59

that the abstract modelling tools, i.e., the scheduler S and the judge J, are
honest and that the bulletin board provides the correct election result to
the voters (see Section 3.1 for a discussion on the trusted bulletin board);
formally ϕ = hon(S) ∧ hon(B) ∧ hon(J).

Theorem 2 (Verifiability). Let ϕ = hon(S)∧hon(B)∧hon(J) be the trust as-
sumptions. Then, the protocol PsElect(nvoters, nservers, µ, p

vote
verif , p

vsd
verif , p

abst
verif , fsElect)

provides δsElect-verifiability w.r.t. the goal γ(k, ϕ), where

δsElect = pclash + pnoclash ·
(

max
k1+k2+2·k3≥k+1

(1− pabstverif)
k1(1− pvoteverif)

k2+k3

)
.

The theorem says that the probability that the distance between the
“real” and the “ideal” voter input is more than k, but still no voter complains,
and hence, the judge rejects the run, is bounded by δsElect.

The formal proof of Theorem 2 is provided in Appendix C.1. The intuition
behind the definition of δsElect is as follows. If there are no clashes in a run,
then the adversary can manipulate a vote of an honest voter only if this
voter does not verify the final result. Recall that dropping or stuffing a vote
increases the distance between the “real” and the “ideal” voter input by 1,
while changing it from a candidate to a different candidate increases it by
2. The integer k1 denotes the number of “stuffed” votes, k2 denotes the
number of “dropped” votes, and k3 denotes the number of changed votes.
So, assuming ϕ holds true and no clashes occur, in order to increase this
distance by at least k, and hence, violate γ(k, ϕ), at least k1 abstaining and
k2 + k3 non-abstaining voters such that k1 + k2 + 2 · k3 ≥ k + 1 should not
check the final result. The probability for this very quickly approaches 0
when k grows.

The other case is that a clash occurs. We note that the occurrence of a
clash does not necessarily mean that the adversary can manipulate more than
k votes. For this, there have to be sufficiently many clashes, and voters within
a cluster of clashes have to vote for the same candidate. Also, the VSDs
of all of these voters have to be dishonest since the probability for clashes
among codes generated by honest VSDs is negligible. So, δsElect as stated in
the theorem is not optimal and certainly smaller in practice, and hence, the
actual level of verifiability offered by sElect is better than what is stated in the
theorem. On the downside, the known results on user-generated passwords
(see, e.g., [Bon12, BPA12]) suggest that the quality of “randomness” provided
by users may be very weak. However, it remains to be determined in a
systematic and sufficiently large user study how likely clashes are for voter-
chosen verification codes.

60

3.5 Accountability

While verifiability requires that manipulation can be detected, accountabil-
ity in addition requires that misbehaving parties can be blamed (recall Sec-
tion 2.4).

As already described, sElect employs two-factor verification: voter-based
verification/human verifiability and VSD-based verification. The verifiabil-
ity result stated above says that the voters, using only the former kind of
verification, i.e., voter-based verification, and without having to trust any
component of the voting system, including their own devices (except that
they need to be able to see the election result on the bulletin board), can
check that their votes have been counted correctly. Since human voters are
only asked to keep their verification codes but not the ciphertexts and the
random coins used to encrypt the choice-code pairs, they do not hold enough
information to single out possibly misbehaving parties and to prove the mis-
behavior of a specific participant to the judge. If such a dispute occurs, the
judge cannot tell whether a voter makes false claims or some servers actually
misbehaved, and hence, the judge cannot resolve the dispute.

Under the assumption that VSDs (of honest voters) are honest, we show,
however, that with VSD-based verification sElect provides strong account-
ability. For this, we use the general definition of accountability described in
Section 2.4, which we instantiate for sElect.

On a high level, our accountability result for sElect says that once an
honest voter (VSD) has successfully cast a ballot and obtained a signed ac-
knowledgement from the authentication server, then in case of manipulation
of the ballot, and in particular, in case the voter’s vote is not counted for
whatever reason, the VSD, when triggered in the verification phase, can al-
ways produce valid evidence to (rightly) blame the misbehaving party.

Unification of voter and VSD. Since the (human) voter does not play a
role for accountability, we will identify each voter with her voter supporting
device and simply call the unification of these two participants the voter. As
before, we denote the probability that an honest voter who does not abstain
from voting verifies the result by pvoteverif ∈ [0, 1], and the probability that an
honest voter who abstains from voting verifies that her name is not listed in
the list ~id output by the authentication server by pabstverif ∈ [0, 1].

In this model, we will state the level of accountability provided by sElect
for the goal γ(k, ϕ) that we have already applied to state the verifiability
result for sElect (Theorem 2). In particular, the trust assumption ϕ remains
the same: we merely have to assume that the scheduler, the judge, and the
bulletin board are honest, i.e., ϕ = hon(S) ∧ hon(J) ∧ hon(B). To state the
accountability result, we first have to define an accountability property Φk

61

which covers the goal γ(k, ϕ).

Accountability property. As defined in Section 2.4, an accountability
property is a collection of accountability constraints which describe who
should be blamed in which situation. For sElect, we define the accountability
constraints along the judging procedure that we have formally modeled in
Section 3.3.

Let χi contain all runs of PsElect where (J2) occurs, i.e., the voter Vi
complains that she did not get a receipt from AS. Similarly, let χ′i contain
all runs of PsElect where (J3) occurs, i.e., the voter Vi complains that she

did not vote, but her identifier is listed in ~id published by AS. Let χ =⋃
i∈{1,...,nvoters} χi ∪ χ

′
i.

Now, we define Φk as the accountability property consisting of the fol-
lowing constraints (for i ∈ {1, . . . , nvoters}):

χi ⇒ dis(Vi) ∨ dis(AS)

χ′i ⇒ dis(Vi) ∨ dis(AS)

¬γ(k, ϕ) ∧ ¬χ⇒ dis(AS) | dis(M1) | . . . | dis(Mnservers)

Clearly, this accountability property covers ¬γ(k, ϕ) by construction, i.e., if
γ(k, ϕ) is not satisfied, these constraints require that the judge has to blame
some party.

Note also that, in the runs covered by the last constraint, all the verdicts
are atomic. This means that Φk requires that except for the cases where χ
holds, whenever the goal γ(k, ϕ) is violated, an individual party is blamed.
Conversely, if χi occurs, the judge cannot be sure whether AS or a voter
Vi misbehaved. As already discussed in Section 3.1, this is a very general
problem, which applies to virtually any remote voting protocol but for which
there are pragmatic solutions. The case χ′i is a common problem as well.
This could be solved, for example, when voters have public/private keys.
Then they could be required to sign their ballots, and hence, AS would have
proof that a voter voted.

Accountability result. We are now able to precisely state and prove the
accountability level of sElect. Recall that pvoteverif ∈ [0, 1] is the probability that
an honest voter who does not abstain from voting verifies the result, and
pabstverif ∈ [0, 1] is the probability that an honest voter who abstains from voting

verifies that her name is not listed in the list ~id output by the authentication
server.

For the primitives used by sElect (see Section 3.2) we assume the fol-
lowing: the public-key encryption scheme should be correct; for verifiability
and accountability, IND-CCA2-security is not needed. Also, the signature
scheme S should be EUF-CMA-secure (see Appendix A.2).

62

Theorem 3 (Accountability). Under the assumptions stated above and the
mentioned judging procedure run by the judge J, the protocol PsElect(nvoters,
nservers, µ, p

vote
verif , p

abst
verif , fsElect) provides (Φk, δk(p

vote
verif , p

abst
verif))-accountability for J,

where

δk(p
vote
verif , p

abst
verif) = max

k1+k2+2·k3≥k+1

(
(1− pabstverif)

k1(1− pvoteverif)
k2+k3

)
.

Proof. See Appendix C.1.

This theorem means that the probability that the distance between the
“real” and the “ideal” voter input is more than k, but the judge nevertheless
did not blame any party, is at most δk(p

vote
verif , p

abst
verif). If, as discussed above,

voters would sign their ballots, then one could get rid of pabstverif in the definition
of δk(p

vote
verif , p

abst
verif), as in this case one could require AS to provide a signed

ballot for every voter listed in ~id. In practice, the problem is that voters
often do not have signing keys. This is why, for example, in Helios too such
signatures are not required. So, if it cannot be proven that voters voted,
the above accountability result really is the best one can hope for in general:
if voters do not check the published data (with their receipt), manipulation
might go undetected with the stated probability.

Note that the accountability level of sElect (Theorem 3) is a special case of
its more general verifiability level (Theorem 2) for pclash = 0. That is because
for the verifiability result, we did not assume that the VSD of an honest
voter is honest as well. So, the probability that a clash occurs between the
verification codes of two human voters (who vote for the same candidate)
is typically not negligible as is the case for the verification codes of two
honest VSD. Hence, while the accountability level of sElect is better than its
verifiability level, we have to make a somewhat stronger trust assumption.

3.6 Privacy

In this section, we carry out a rigorous privacy analysis of sElect. We show
that sElect has a high level of privacy for the class of adversaries which are
not willing to take a high risk of being caught cheating. This level is in fact
very close to ideal when measuring privacy of single voters.

In what follows, we first introduce the class of adversaries we consider.
We then state the privacy result for sElect.

3.6.1 Risk-avoiding Adversaries

The privacy definition we use (Definition 3) requires that, except with a
small probability, the adversary should not be able to distinguish whether

63

some voter (called the voter under observation) voted for ch0 or ch1 when she
runs her honest program. Now, an adversary who controls the authentication
server, say, could drop or replace all ballots except for the one of the voter
under observation. The final result would then contain only the vote of the
voter under observation, and hence, the adversary could easily tell how this
voter voted, which breaks privacy.

However, such an attack is extremely risky in sElect. Assuming that the
voters’ VSDs are honest (which we need to assume for privacy anyway, see
further below), the probability of being caught grows exponentially in the
number k of honest votes that are dropped or changed (see Section 3.5).
Thus, in the above attack where k is big, the probability of the adversary
to get caught would be very close to 1. In the context of e-voting, where
misbehaving parties that are caught have to face severe penalties or loss of
reputation, this attack seems completely unreasonable.

A more reasonable adversary would possibly consider dropping some small
number of votes, for which the risk of being caught is not too big, in order to
weaken privacy to some degree. To analyze this trade-off, we use the notion
of k-risk-avoiding adversaries.1011

Intuitively, a k-risk-avoiding adversary would not manipulate too many
votes of honest voters. More specifically, he would produce runs in which
the goal γ(k, ϕ) holds true. From the (proof of the) accountability results
obtained in Section 3.5, we know that whenever an adversary decides to break
γ(k, ϕ) his risk of being caught is at least δsElect: Consider a run in which
γ(k, ϕ) does not hold true and in which all random coins are fixed except
for the ones that determine which honest voters perform their verification
procedure. Then, the probability taken over these random coins that the
adversary gets caught is at least δsElect. That is, such an adversary knows
upfront that he will be caught with a probability of at least δsElect which
converges exponentially fast to 1 in k (assuming that the VSDs are honest,
which we need to assume for privacy anyway). Therefore, an adversary not
willing to take a risk of being caught higher than δsElect would never cause
γ(k, ϕ) to be violated, and hence, manipulate too many votes.

This motivates the following definition: an adversary is k-risk-avoiding in
a run of a protocol P (w.r.t. ϕ) if the goal γ(k, ϕ) is satisfied in this run. An
adversary (of an instance π of P) is k-risk-avoiding if he is k-risk-avoiding
with overwhelming probability (w.r.t. ϕ) over the set of all runs of π.

10In [KMST16a], such adversaries are called k-semi-honest. However, this term is mis-
leading since these adversaries do not have to follow the protocol.

11In the field of secure MPC (see, e.g, [AL07]), such adversaries are sometimes called
covert adversaries.

64

0

0.1

0.2

0.3

20 50 100 200 500
number of honest voters (nhonest

voters)

p
ri

va
cy

le
ve

l
(δ

)

k=0 (also ideal)
k=1
k=2
k=5
k=10

Figure 3.1: Privacy level for sElect with k-risk-avoiding adversary, for different
number of honest voters nhonestvoters and different k. The honest voters vote for two
candidates, with probabilities 0.4 and 0.6. Note that the case k = 0 also equals
the ideal case.

3.6.2 Analysis

We now prove that sElect provides a high level of privacy w.r.t. k-risk-
avoiding adversaries and in the case that at most nservers − 1 mix servers
are dishonest. Clearly, if nservers servers were dishonest, privacy cannot be
guaranteed because an adversary could then trace all ballots through the
mix net. Obviously, we also need to assume that the VSD of each honest
voter is honest since the device receives the chosen candidate and the verifi-
cation code of the voter in plaintext. In our formal analysis of privacy below,
we therefore consider the voter and the VSD to be one entity. By “high level
of privacy” we mean that sElect provides δ-privacy for a δ that is very close
to the ideal one.

More specifically, the privacy result for sElect is formulated w.r.t. the
ideal voting protocol Ivoting(fsElect, nvoters, n

honest
voters , µ) (Section 2.5.2). In this

protocol, honest voters pick their choices according to the distribution µ. In
every run, there are nhonest

voters many honest voters and nvoters voters overall. The
ideal protocol collects the votes of the honest voters and the dishonest ones
(where the latter ones are independent of the votes of the honest voters) and
outputs the result according to the result function fsElect.

The level of privacy clearly depends on the number of cast ballots by
honest voters. In our analysis, to have a guaranteed number of honest voters
casting their ballots, we therefore in what follows assume that honest voters

65

do not abstain from voting. Note that the adversary would know anyway
which voters abstained and which did not. Also abstaining voters can be
simulated as dishonest voters by the adversary. Technically, our assumption
means that in the distribution µ the probability of abstention is zero.

We prove the privacy theorem for sElect for adversaries that (i) are k-
risk-avoiding, (ii) do not corrupt more than nservers− 1 mix servers, and (iii)
leave at least nhonest

voters voters uncorrupted, i.e., given an instance, the set of runs
for which these conditions are not met should be negligible. The mapping A
to sets of admissible adversaries is defined accordingly (recall Definition 3).
Now, the privacy theorem for sElect says that the level of privacy of sElect
for this class of adversaries is the same as the one for the ideal protocol with
nhonest
voters − k honest voters.

Theorem 4 (Privacy). Under the assumptions stated above and with the
mapping A as defined above, the protocol PsElect(n

honest
voters , nservers, µ, p

vote
verif , p

abst
verif ,

fsElect) achieves δideal
(nvoters,nhonest

voters−k,µ)
(fsElect)-privacy w.r.t. A.

Proof. See Appendix C.2.

In Figure 3.1, we present some selected values of δideal
(nvoters,nhonest

voters−k,µ)
(fsElect)

which, by the above theorem, express the privacy level of sElect when k-
risk-avoiding adversaries are considered. Since the probability distribution
of the (human) voter verification codes can, in general, hardly be modeled,
the result function in Figure 3.1 is simplified such that it only reveals the
chosen candidates cand but not the respective verification codes codevoter. As
can be seen from Figure 3.1, the privacy level for different k’s changes only
very little for 20 honest voters and almost nothing for more honest voters.
Conversely, the risk of the adversary being caught increases dramatically
with increasing k, i.e., the number of dropped votes. For example, if we take
p = 0.5 similar to our mock elections, we obtain 75% for k = 4, 97% for
k = 10, and ≈ 100% for k = 20. This means that unless adversaries do not
care being caught at all, privacy cannot be broken.

3.7 Implementation

In this section, we shortly describe our prototypical implementation of sE-
lect.12 We also briefly report on two small mock elections we carried out with
sElect, with the main intention to get a first feedback on the verification rates
for our fully automated VSD-based verification mechanism.

12As noted in Section 1.2, Enrico Scapin has implemented the sElect voting system. For
more details, see [Sca18].

66

We have implemented sElect as a platform independent web application.
Voters merely need a browser to vote and to verify their votes. In order to
vote, voters go to a web site that serves what we call a voting booth. More
precisely, a voting booth is a web server which serves a collection of static
HTML/CSS/JavaScript files. There otherwise is no interaction between the
voter’s browser and the voting booth server: ballot creation, casting, and
verification are then performed within the browser, as explained below (of
course for ballot casting, the voter’s browser communicates with the authen-
tication server). The idea is that the voter can choose a voting booth, i.e., a
web server, among different voting booths that she trusts and that are inde-
pendent of the election authority. Voting booths might be run by different
organizations as a service and independently of a specific election (see also
the discussion in Section 3.1). So what abstractly was called a VSD in the
previous sections, in our implementation comprises the voter’s computing
platform, including her browser, as well as some voting booth server which
the voter picks and which serves the static JavaScript files to be executed.
The JavaScript code performs the actual actions of the VSD described in Sec-
tion 3.2 within the browser and without further interaction with the voting
booth server.13

A voter enters her vote in the browser (on the voting booth’s web site)
and then ballot creation and verification of acknowledgments are carried out
locally within the voters’ browser. Votes only leave the browser encrypted
(as ballots), to be submitted to the authentication server. Full receipts, i.e.,
all the information required for the VSD-based verification process, are saved
using the browser’s local storage (under the voting booth’s origin); other web
sites cannot access this information. When the election is over, the voter is
prompted to go to her voting booth again in order to check the election result.
When the voter opens the voting booth in this phase, it automatically fetches
all the necessary data and carries out the automated verification procedure;
if the voter’s ballot has not been counted correctly, cryptographic evidence
against a misbehaving server is produced, as described in Section 3.2 (see
also Section 3.5). In addition to this fully automated check, the voter is
given the opportunity to visit the bulletin board (web site), where she can
see the result and manually check that her verification code is listed next to
her choice.

Two small mock elections. To obtain user feedback and, in particular, get

13On a mobile device one could, for example, also provide an app to the voter which
performs the task of the VSD; again there might be more apps from which the voter could
choose. This of course assumes that the voter installs such an app on her device. Since
the idea is that a voting booth can be used independently of a specific election, this is
reasonable as well.

67

a first estimate of the verification ratio for the fully automated verification,
we carried out two mock elections. We used a slightly modified version of
the voting booth which allowed us to gather statistics concerning the user
behavior. We emphasize that these field tests were not meant to be full-
fledged and systematic usability studies, which we leave for future work.

The participants of these mock elections were students of our department
and researchers of a national computer science project. In the former case,
out of 52 cast ballots, 30 receipts were checked automatically; in the latter
case, out of 22 cast ballots, 13 were checked automatically. As one can see,
the verification ratio was quite high in both cases (57.5% and 59.1%). In
fact, with such a high ratio, the dropping or manipulation of even a very
small number of votes is detected with very high probability, according to
our results in Sections 3.4, 3.5, and 3.6. Moreover, we can expect that some
number of verification codes were checked manually, so the overall verification
ratio might be even higher (we do not have, however, reliable data about
voter-based verification).

We believe that for real elections one might obtain similar ratios: voters
might be even more interested in the election outcome than in a mock election
and, hence, they would tend to check the result and trigger the automated
verification procedure.

3.8 Related Work

As already mentioned in the introduction, existing remote electronic voting
systems range from Helios, which so far was one of the simplest systems, to
very complex systems, such as Civitas. In addition, there is the idea of code
voting, where voters, via an additional channel, e.g., mail, are provided with
codes which they use to vote (see, e.g., [HRT10, NFSF14]). sElect is in the
spirit of the former mentioned systems.

There have been several usability studies which show that for the existing
remote voting systems, in particular Helios, voters often have problems with
the ballot casting and verification procedure. In particular, they are confused
about the concept of and the motivation for verification in Helios (see, e.g.,
[OBV13]). While we have not performed a systematic usability study, our
case studies indicate that this seems to be less problematic in sElect.

To the best of our knowledge, all practical remote e-voting systems rely
on specific cryptographic schemes, such as ElGamal encryption in combi-
nation with specific zero-knowledge proofs etc. In contrast, sElect can be
used with any IND-CCA2-secure public-key encryption scheme and any EUF-
CMA-secure digital signatures scheme, which, as already pointed out in the

68

introduction, has several advantages (arbitrary ballots can be supported,
post-quantum cryptography could be used, standard cryptographic libraries).
In [KMW12], the intention was to built a universally verifiable mix net (a
full fledged e-voting system was not considered) from any IND-CCA2-secure
public-key encryption scheme. However, even here the construction needed
specific requirements (the scheme needed to allow for proofs of correct de-
cryption), which are not necessary for sElect.

69

Chapter 4

Ordinos: A Verifiable
Tally-Hiding Remote E-Voting
System

With only very few exceptions (see below), in all existing e-voting systems
which are designed to provide privacy and verifiability/accountability, the
full election result, consisting of the number of votes per candidate or even
all single votes, is revealed. Revealing everything, however, sometimes is
undesirable, for example, in the following situations:

• Some elections have several rounds. In particular, they might involve
runoff elections. In order to get unbiased voters’ opinions, one might
not want to reveal intermediate election results, except for the informa-
tion which candidates move on to the runoff elections. For example, if
no candidate received the absolute majority, one might want to reveal
only the two best candidates, who then move on to the runoff election.

• Elections are often carried out among a small set of voters (e.g., in
boardroom or jury votes). Even in an ideal voting system, revealing the
complete result leads to a low level of privacy because a single voter’s
vote is “hidden” behind only a low number of other votes. Therefore, in
such an election, a voter may not vote for her actual preference knowing
that it does not really remain private.

• In some elections, for example, within companies, associations, sports
clubs, or in boardroom elections, it might be embarrassing for the loos-
ing candidates to publish the (possibly low) number of votes they re-
ceived.

70

• For some elections, regulations might forbid to reveal the full result to
anybody or at least to the public.

These examples illustrate that, for some elections, it is desirable to hide
parts of the election result. Following [SP15], we call e-voting systems that
hide part of the tally tally-hiding. There is of course a large variety of election
result functions (which determine the kind of result to be published) such
systems could realize and these functions can be more or less tally-hiding.
For example, one might want to reveal only the winner of an election with
or without the number of votes he/she received, only the set of the first k
candidates, which might be up for a runoff election, only the set of the last k
candidates, which might be excluded from a runoff election, or only a ranking
of candidates, without the number of votes they received.

So, while tally-hiding e-voting is desirable in many situations, it has re-
ceived only very little attention so far. In fact, as to the best of our knowledge,
only three tally-hiding e-voting systems have been proposed in the literature
to date: a quite old one by Benaloh [Ben86] and two more recent ones by
Szepieniec and Prenell [SP15] and by Canard et al. [CPST18]. As further
discussed in Section 4.8, among other shortcomings, none of these systems
comes with a rigorous cryptographic security proof and only one of these
systems has been implemented. Hence, in this largely unexplored field, it
remains an open problem to develop and implement a provably secure veri-
fiable tally-hiding e-voting system and to obtain a deeper understanding of
tally-hiding voting in general. This is the main goal of this chapter.

4.1 Contributions

We present Ordinos, the first provably secure verifiable tally-hiding e-voting
system. Ordinos is a generic extension of the prominent Helios remote e-
voting system, where Helios reveals always the full result. Ordinos supports
several tally-hiding result functions, including revealing only the winner of an
election, the k best/worst candidates, or the overall ranking, with or without
disclosing the number of votes per candidate, respectively.

We start with describing Ordinos in Section 4.2 and then formally model
Ordinos in Section 4.3. In Sections 4.4 and 4.5, we carry out a detailed cryp-
tographic analysis proving that Ordinos provides privacy, verifiability, and
accountability, with full proofs provided in Appendix C. More specifically, we
show that Ordinos preserves the same level of verifiability and accountabil-
ity as Helios, independently of the tally-hiding result function considered.
More generally, these results demonstrate that the common definitions for

71

verifiability and accountability are independent of the specific result func-
tions considered. Conversely, with result functions that hide most of the full
election result, the level of privacy Ordinos provides might be much better
than Helios. To study privacy for tally-hiding voting more generally, we de-
rive privacy results for an ideal tally-hiding voting protocol for various result
functions in order to compare the privacy levels. We then show that the pri-
vacy of Ordinos can be reduced to the ideal protocol. These general results
about properties of tally-hiding voting systems are of independent interest.

Our cryptographic analysis of Ordinos is based on generic properties of the
employed cryptographic primitives. Hence, they can be instantiated by arbi-
trary cryptographic constructions satisfying these properties. In Section 4.6,
we propose one such instantiation using among others Paillier public-key en-
cryption, an MPC protocol for greater-than by Lipmaa and Toft [LT13], as
well as NIZKPs by Schoenmakers and Veeningen [SV15]. We implemented
Ordinos based on this instantiation and evaluated its performance, demon-
strating its practicability in Section 4.7. We close this chapter with a discus-
sion of Ordinos and its related work in Section 4.8.

4.2 Description

In this section, we present the Ordinos voting protocol on the conceptual
level. We start with the cryptographic primitives that we use. Instead of
relying on specific primitives, the security of Ordinos can be guaranteed under
certain assumptions these primitives have to satisfy. In particular, they can
later be instantiated with the most appropriate primitives available.

As already mentioned, Ordinos extends the prominent Helios e-voting
protocol. While in Helios the complete election result is published (the num-
ber of votes per candidate/choice), Ordinos is tally-hiding. More specifically,
the generic version of Ordinos, which we prove secure, supports arbitrary
(tally-hiding) result functions evaluated over the aggregated votes per can-
didate. Our concrete instantiation (see Section 4.6) then realizes many prac-
tically relevant such functions.

In a nutshell, Ordinos works as follows: Voters encrypt their votes and
send their ciphertexts to a bulletin board. The ciphertexts are homomorphi-
cally aggregated to obtain ciphertexts that encrypt the number of votes per
candidate. Then, by an MPC protocol, trustees evaluate the desired result
function on these ciphertexts and publish the election result.

Cryptographic primitives. We use the following cryptographic primitives
(for more details, see Appendix A.1, A.3, B, and A.2, respectively):

72

• A homomorphic, IND-CPA-secure (t, ntrustees)-threshold public-key en-
cryption scheme E = (KeyShareGen, PublicKeyGen,Enc,DecShare,Dec),
for example, exponential ElGamal or Paillier.

• A non-interactive zero-knowledge proof (NIZKP) πEnc for proving cor-
rectness and knowledge of a plaintext vector given a ciphertext vector,
a public key, and a predicate which specifies valid choices (see below); a
NIZKP πKeyShareGen for proving knowledge and correctness of a private
key share given a public key share.

• A multi-party computation (MPC) protocol PMPC that takes as input a
ciphertext vector of encrypted integers (encrypted using E from above)
and securely evaluates a given function ftally over the plain integers and
outputs the result on a bulletin board. For example, a function ftally
that outputs the index(s) of the ciphertext(s) with the highest integer
would be used to determine and publish the winner of an election.
The exact security properties PMPC has to satisfy to achieve privacy,
verifiability, and accountability for the overall system, Ordinos, are
made precise in the following sections.

• An EUF-CMA-secure signature scheme S.

Protocol participants. The Ordinos protocol is run among the follow-
ing participants: a voting authority Auth, voters V1, . . . ,Vnvoters , trustees
T1, . . . ,Tntrustees , an authentication server AS, and an append-only bulletin
board B.

We assume the existence of the following authenticated channels:1 An
authenticated channel from each voter Vi to the authentication server AS.
These channels allow AS to ensure that only eligible voters are able to cast
their ballots. An authenticated channel from each voter Vi to the bulletin
board B. The voter can use the channel in order to post information on the
bulletin board B, for example, a complaint in case her ballot is not published
by AS (see below).

Protocol overview. A protocol run consists of the following phases:

1. Setup phase: Parameters and key shares are fixed/generated. The
public key shares are published.

1By assuming such authenticated channels, we abstract away from the exact method
the voters use to authenticate; in practice, several methods can be used, such as one-time
codes, passwords, or external authentication services.

73

2. Voting phase: Voters pick their choices, encrypt them, and submit their
ballots.2

3. Voter verification phase: Voters verify (now or later) that their ballots
have been published by the authentication server.

4. Tallying phase: The trustees homomorphically aggregate the ballots
and run PMPC in order to secretly compute and publish the election
result according to the tally-hiding result function ftally so that not
even the trustees learn anything beyond the final tally-hiding result.

5. Public verification phase: Everyone can verify that the trustees tallied
correctly.

We now explain each phase in more detail.

Setup phase. In this phase, all election parameters are fixed and posted
on the bulletin board by the voting authority Auth: the list ~id of eligible
voters, opening and closing times, the election ID idelection, etc. as well as
the set C ⊆ {0, . . . , nvpc}ncand ∪ {abstain} of valid choices where ncand denotes
the number of options/candidates, nvpc the number of admissible votes per
option/candidate, and abstain models that a voter abstains from voting. For
example, if each voter can vote for at most one candidate, then nvpc = 1 and
every vector in C contains at most one 1-entry.

The authentication server AS and each trustee Tk run the key generation
algorithm of the digital signature scheme S to generate their public/private
(verification/signing) keys. The verification keys are published on the bul-
letin board B. In what follows, we implicitly assume that whenever the
authentication server AS or a trustee Tk publish information, they sign this
data with their signing keys.

Every trustee Tk runs the key share generation algorithm KeyShareGen of
the public-key encryption scheme E to generate its public/private (encryp-
tion/decryption) key share pair (pkk, skk). Additionally, each trustee Tk cre-
ates a NIZKP πKeyShareGen

k to prove knowledge of skk and validity of (pkk, skk).

Each trustee Tk then posts (pkk, π
KeyShareGen
k) on the bulletin board B. With

PublicKeyGen, everyone can then compute the (overall) public key pk.

Voting phase. In this phase, every voter Vi can decide to abstain from
voting or to vote for some choice ch ∈ C ∩ {0, . . . , nvpc}ncand . In the latter

2We note that in the original Helios voting scheme, a voter can use a second trusted
device to challenge her VSD in order to verify whether or not her VSD has in fact encrypted
the correct choice (Benaloh challenge). This verification procedure is orthogonal to the
rest of the protocol. As such, this mechanism could easily be included in Ordinos as well.
For the sake of simplicity, we do not take Benaloh challenges into account.

74

case, the voter encrypts each entry of ch separately under the public key pk
and obtains a ciphertext vector ~ci. That is, the j-th ciphertext in ~ci encrypts
the number of votes assigned by voter Vi to candidate/option j. In addition
to ~ci, the voter creates a NIZKP πEnc

i in order to prove that she knows which
choice ch the vector ~ci encrypts and that ch ∈ C \ {abstain}.

The voter Vi submits bi = (id,~ci, π
Enc
i) as her ballot to the authentication

server AS on an authenticated channel, where id ∈ ~id is the voter’s identifier.
If AS receives a ballot in the correct format (i.e., id ∈ ~id and id belongs to Vi,
and bi is tagged with the correct election ID idelection) and the NIZKP πEnc

i is
valid, then AS responds with an acknowledgement consisting of a signature
on the ballot bi; otherwise, it does not output anything.3 The voter stores
the ballot bi as well as the acknowledgement for verification purposes later
on. If the voter tried to re-vote and AS already sent out an acknowledgement,
then AS returns the old acknowledgement only and does not accept the new
vote.

If a voter does not receive a correct acknowledgement from AS, the voter
tries to re-vote, and, if this does not succeed, she files a complaint on the bul-
letin board using the authenticated channel. If such a complaint is posted,
it is in general impossible to resolve the dispute and decide who is to be
blamed: AS who might not have replied as expected (but claims, for in-
stance, that the ballot was not cast) or the voter who might not have cast a
ballot but nevertheless claims that she has. Note that this is a very general
problem which applies to virtually any remote voting protocol (e.g., sElect,
see Section 3.2). In practice, the voter could ask the voting authority Auth
to resolve the problem.

When the voting phase is over, AS creates the list of valid ballots ~b that
have been submitted. Then AS removes all ballots from ~b that are duplicates
w.r.t. the pair (~c, πEnc) only keeping the first one in order to protect against

replay attacks, which jeopardize vote privacy [CS11]. Afterwards, AS signs ~b
and publishes it on the bulletin board.

Voter verification phase. After the list of ballots ~b has been published,
each voter Vi can verify whether (i) her ballot bi appears in ~b in the case
she voted (if not, Vi can publish the acknowledgement she received from AS
on the bulletin board which serves as binding evidence that AS misbehaved),

or (ii) none of the ballots in ~b contain her id in the case she abstained. In
the latter case, the dispute cannot be resolved without further means: Did
Vi vote but claims that she did not or did Vi not vote but AS used her id

3Just as for Helios, variants of the protocol are conceivable where the voter’s ID is not
part of the ballot and not put on the bulletin board or at least not next to her ballot (see,
e.g., [KTV12b]).

75

dishonestly?4

In both cases, however, it is well-known that, realistically, not all voters
are motivated enough to perform these verification procedures, and even if
they are, they often fail to do so (see, e.g., [KOKV11]). In our security
analysis of Ordinos, we therefore assume that voters perform the verification
procedures with a certain probability.

Tallying phase. The list of ballots ~b posted by AS is the input to the
tallying phase, which works as follows.

1. Homomorphic aggregation. Each trustee Tk reads ~b from the bulletin
board B and verifies its correctness (as described in the voting phase
above). If this check fails, Tk aborts since AS should guarantee this.

Otherwise, Tk homomorphically aggregates all vectors ~ci in ~b entrywise
and obtains a ciphertext vector cunsorted with ncand entries each of which
encrypts the number of votes of the respective candidate/option.

2. Secure function evaluation. The trustees T1, . . . ,Tntrustees run the MPC
protocol PMPC with input cunsorted to securely evaluate the result func-
tion ftally. They then output the election result according to ftally,
together with a NIZKP of correct evaluation πMPC.5

Public verification phase. In this phase, every participant, including
the voters or external observers, can verify the correctness of the tallying
procedure, in particular, the correctness of all NIZKPs.

Instantiation and implementation. As already mentioned, in Section 4.6
we show how to efficiently instantiate Ordinos with concrete primitives. In
particular, we provide an efficient realization of a relevant class of tally-
hiding result functions, e.g., for publishing only the winner of an election
or certain subsets or rankings of candidates. In Section 4.7, we describe our
implementation and provide benchmarks. Our model and security analysis of
Ordinos, presented in the following sections are, however, more general and
apply to arbitrary instantiations of Ordinos as long as certain assumptions
are met.

4As for sElect, variants of the protocol are conceivable where a voter is supposed to
sign her ballot and the authentication server presents such a signature in the case of a
dispute (see, e.g., [CGGI14]). This also helps in preventing so-called ballot stuffing.

5πMPC will typically consist of several NIZKPs, e.g., NIZKPs of correct decryption, etc.
See also our instantiation in Section 4.6.

76

4.3 Formal Protocol Model

The Ordinos voting protocol can be modeled in a straightforward way as a
voting protocol POrdinos(nvoters, ntrustees, µ, pverify, ftally) in the above sense, as
detailed next.

• By nvoters we denote the number of voters and their voter supporting
devices, and by ntrustees the number of trustees.

• By µ we denote a probability distribution on the set of choices, includ-
ing abstention. An honest voter makes her choice according to this
distribution.6 Note that the set of valid choices is implicitly given by
µ.

• By pverify ∈ [0, 1] we denote the probability that an honest voter Vi
performs the check described in Section 4.2, voter verification phase.7

• By ftally we denote the (tally-hiding) result function.

The set of agents of POrdinos consists of all agents described in Section 4.2,
i.e., the bulletin board B, voters V1, . . . ,Vnvoters , the authentication server
AS, trustees T1, . . . ,Tntrustees , and in addition, a scheduler S. As in sElect,
the latter party plays the role of the voting authority Auth and schedules
all other agents in a run according to the protocol phases. Also, it is the
master program in every instance of POrdinos. All agents are connected via
channels with all other agents; honest agents will not use all of these channels,
but dishonest agents might. The honest programs π̂a of honest agents a
are defined below. We assume that the scheduler S and the bulletin board
B are honest. All other agents can possibly be dishonest. These agents
can run arbitrary probabilistic (polynomial-time) programs. We note that
the scheduler is only a modeling tool. It does not exist in real systems.
The assumption that the bulletin board is honest is common; Helios makes
this assumption too, for example. In reality, the bulletin board should be

6This in particular models that adversaries know this distribution. In reality, the
adversary might not know this distribution precisely. This, however, makes our security
results only stronger.

7It would be a bit more accurate to split up pverify into two probabilities because it
is more likely that a voter who voted checks whether her ballot appears on the bulletin
board than that a voter who did not vote checks whether her ID does not appear. This
has, for example, been taken into account in the security analysis of the sElect protocol
(Section 3.3). For simplicity and in order to concentrate more on the tally-hiding aspects,
we do not distinguish these two cases here. Also, checks by voters who abstained are
mainly about preventing ballot stuffing, which can be dealt with by other means as well
(see also Footnote 4).

77

implemented in a distributed way (see, e.g., [CS14, KKL+18]). In addition to
the participants listed above, we also have a judge J in order to model/analyze
verifiability and accountability of sElect (recall Section 2.3 for details on
verifiability).

Scheduler S. In every instance of POrdinos, the honest program π̂S of S
plays the role of the master program. We assume that it is given information
about which agents are honest and which are dishonest in order to be able
to schedule the agents in the appropriate way. In what follows, we implicitly
assume that the scheduler triggers the adversary (any dishonest party) at the
beginning of the protocol run and at the end of this run. Also, the adversary
is triggered each time an honest party finishes its computations (after being
triggered by the scheduler in some protocol step). This keeps the adversary
up to date and allows it to output its decision at the end of the run. By
this, we obtain stronger security guarantees. Similarly, we assume that the
judge is triggered each time any other party (honest or dishonest) finishes its
computation (after being triggered by the scheduler). This gives the judge
the chance to output its verdict after each protocol step. If the judge posts a
message on the bulletin board B which indicates to stop the whole protocol,
then the scheduler triggers once more the adversary (to allow it to output its
decision) and then halts the whole system. This means that no participants
are further triggered. We also let the scheduler create common reference
strings (CRSs) for all the required NIZKPs, by calling the setup algorithm of
the non-interactive zero-knowledge proof systems used in the protocol, and
provide them to all parties.

In the remaining part of the section, we precisely describe the honest
program of the scheduler depending on the voting phase.

Scheduling the setup phase. At the beginning of the election, the scheduler
determines the set of possible choice C ⊆ {0, . . . , nvpc}ncand ∪ {abstain} of
valid choices where ncand denotes the number of options/candidates, nvpc the
number of admissible votes per option/candidate, and abstain models that a
voter abstains from voting. Then, the scheduler generates a random number
idelection, the election identifier, with the length of the security parameter `
and sends it to the bulletin board B which publishes idelection and C.8

After that, the scheduler first triggers all honest trustees Tk, which are
supposed to generate their verification/signing key pairs (Verifyk, signk) and

8Whenever we say that a party computes a signature on some message m, this implicitly
means that the signature is computed on the tuple (idelection, tag,m) where idelection is an
election identifier (different for different elections) and tag is a tag different for signatures
with different purposes (for example, a signature on a list of voters uses a different tag
than a signature on a list of ballots).

78

publish the public (verification) keys Verifyk on the bulletin board B, and
then all the dishonest ones. In what follows, we implicitly assume that each
trustee Tk is supposed to sign all of its messages to the bulletin board under
signk.

Afterwards, the scheduler triggers all honest trustees, and then all dis-
honest ones, to run the key share generation algorithm KeyShareGen of the
public-key encryption scheme scheme E . As a result, each trustee publishes a
public key share pkk (together with a NIZKP of correctness and knowledge of
the respective secret key share skk), so that the public key pk can be obtained
by running PublicKeyGen on the published public key shares.

Scheduling the voting phase. The scheduler first triggers all the honest
voters and then the dishonest ones, allowing them to cast their ballots to
the authentication server AS. After each such step (when the computations
of a voter and the authentication server are finished), the scheduler triggers
the voter again in order to allow the voter to post a complaint, if she does
not get a valid acknowledgement from the authentication server. As specified
below, the authentication server AS is modeled in such a way that it provides
all collected ballots (even before AS publishes them on the bulletin board
B) to an arbitrary participant who requests these ballots. Afterwards, the
scheduler triggers the authentication server which is supposed to publish the
list of ballots ~b (containing the (first) valid ballot cast by each eligible voter)
on the bulletin board B.

Scheduling the voter verification phase. Similarly to the voting phase, the
scheduler triggers first the honest voters who are supposed to verify (with
probability pverify) the input to the tallying phase. See below for details.
Afterwards, the scheduler triggers all the dishonest voters.

Scheduling the tallying phase. The scheduler runs the scheduling procedure
of the given MPC protocol.

Authentication Server AS. The honest program of the authentication
server AS in Ordinos is the same as the one of AS in sElect (see Section 3.3).

Bulletin Board B. The honest program of the bulletin board B in Ordinos
is the same as the one of B in sElect (see Section 3.3).

Voter Vi. A voter Vi, when triggered by the scheduler S in the voting phase,
picks chi from C according to the probability distribution µ. A choice may be
either a distinct value abstain, which expresses abstention from voting, or an
integer vector from {0, . . . , nvpc}ncand . If chi = abstain, then the voter program
stops. Otherwise, if chi = (mi,1, . . . ,mi,ncand

) ∈ ({0, . . . , nvpc}ncand ∩ C), the
program continues as follows. The voter encrypts each integer mi,j under
the public key pk to obtain a ciphertext ci,j. Afterwards, the voter creates a
NIZKP πEnc of knowledge and correctness for the ncand-ary relation over the

79

plaintext space which holds true if and only if (m1, . . . ,mncand
) ∈ C\{abstain}.

The ballot
bi =

(
idi, (ci,1, . . . , ci,ncand

), πEnc
i

)
is then sent to the authentication server AS. The voter expects to get back
an acknowledgement (a signature of AS on the submitted ballot). When this
happens, the voter verifies the acknowledgement. If the acknowledgement is
incorrect, the voter posts a complaint on the bulletin board via her authenti-
cated channel. Note that the program of the voter may not get any response
from AS in case AS is dishonest. To enable the voter in this case to post a
complaint on the bulletin board, the scheduler triggers the voter again (still
in the voting phase).

The voter Vi, when triggered by the scheduler S in the verification phase,
carries out the following steps with probability pverify. If chi was abstain,

the voter verifies that her id is not listed in the list of ballots ~b output by
the authentication server. She files a complaint if this is not the case. If
chi 6= abstain, the voter checks that her id and her ballot bi appear in the
list of ballots ~b, output by the authentication server. As before, she files a
complaint if this is not the case.

Trustee Tk. A trustee Tk, when triggered by the scheduler S in the key
generation phase for the signature scheme, runs the key generation algorithm
KeyGen of S to obtain a verification/signing key pair (Verifyk, signk). Then,
the trustee sends the verification key to the bulletin board B.

When triggered by the scheduler S in the key generation phase for the
encryption scheme, the trustee Tk runs the key share generation algorithm
KeyShareGen of E to obtain a secret key share skk and a public key share pkk.
Then, the trustee Tk creates a NIZKP πKeyShareGen

k for proving correctness of
the public key share pkk including knowledge of an adequate secret key share
skk. The trustee signs (pkk, π

KeyShareGen
k) with the signing key signk and sends

it, together with signature, to the bulletin board B.
When triggered by the scheduler S in the tallying phase, the trustee Tk

reads the list of ballots ~b published and signed by the authentication server
AS from the bulletin board B. If no such list exists or if the signature is not
correct or if the list is not correct (see above), the trustee aborts. Otherwise,
Tk calculates

cunsorted ←

(∑
i

chi,1, . . . ,
∑
i

chi,ncand

)
,

where
∑

i chi,j encrypts the total number of valid votes for candidate j. Up
to this step, Ordinos is completely identical to Helios.

80

Then, the trustees run the MPC protocol PMPC with input cunsorted. The
output of PMPC is the overall election result of Ordinos, plus some NIZKP of
correct evaluation πMPC.

Judge J. We assume that J is honest. We note that the honest program π̂J
of J, as defined below, uses only publicly available information, and therefore
every party, including the voters as well as external observers, can run the
judging procedure.

The program π̂J, whenever triggered by the scheduler S, reads data from
the bulletin board and verifies its correctness, including correctness of posted
complaints. The judge outputs verdicts (as described below) on a distinct
tape. More precisely, the judge outputs verdict in the following situations:

(J1) If a party a deviates from the protocol specification in an obvious way,
then J blames a individually by outputting the verdict dis(a). This is
the case if the party a, for example, (i) does not publish data when
expected, or (ii) publishes data which is not in the expected format, or
(iii) publishes a NIZKP which is not correct, etc.

(J2) If a voter Vi posts an authenticated complaint in the voting phase that
the authentication server AS has not responded with a valid acknowl-
edgement, then the judge outputs the verdict dis(Vi) ∨ dis(AS), which
means that (the judge believes that) either Vi or AS is dishonest but
cannot determine which of them.

(J3) If a voter Vi posts an authenticated complaint claiming that she did
not vote, but her name was posted by the authentication server AS in
one of the ballots in ~b, the judge outputs the verdict dis(AS) ∨ dis(Vi).

(J4) If, in the verification phase, a valid complaint is posted containing an
acknowledgement of AS, i.e., the complaint contains a signature of AS
on a ballot which is not in the list of ballots ~b published by AS, then
the judge blames AS individually by outputting the verdict dis(AS).

(J5) During the execution of PMPC the judge runs the judging procedure
JMPC of PMPC. If JMPC outputs a verdict, then J also outputs this
verdict.

If none of these situations occur, the judge J outputs accept on a distinct
tape.

81

4.4 Verifiability and Accountability

In this section, we formally establish the level of verifiability and account-
ability provided by Ordinos. We show that Ordinos inherits the level of
verifiability and accountability from the original Helios voting protocol. In
particular, this implies that this level is independent of ftally, and hence, the
degree to which ftally hides the tally. This might be a bit surprising at first
since less information being published might mean that a system provides
less verifiability/accountability.

Our analysis of Ordinos in terms of verifiability and accountability uses
the generic KTV framework introduced in Section 2.3. Beyond its expressive-
ness, the KTV framework is particularly suitable to analyze Ordinos because
(i) it does not make any specific assumptions on the result function of the
voting protocol, and (ii) it can, as illustrated here, also be applied to MPC
protocols.

Assumptions. We prove the verifiability result for Ordinos for the goal
γ(k, ϕ), with γ(k, ϕ) as defined in Section 2.3.2, and under the following
assumptions:

(V1) The public-key encryption scheme E is correct (for verifiability, IND-
CPA-secure is not needed), πKeyShareGen and πEnc are NIZKPs, and the signa-
ture scheme S is EUF-CMA-secure.

(V2) The scheduler S, the bulletin board B, and the judge J are honest,
i.e., ϕ = hon(S) ∧ hon(J) ∧ hon(B).

(V3) The MPC protocol PMPC is (γ(0, ϕ), 0)-verifiable, meaning that if
the output of PMPC does not correspond to its input, then this can always be
detected publicly.

Verifiability. We now state the verifiability and accountability level offered
by Ordinos according to Definitions 1 and 2. Both levels depend on the voter
verification rate pverify, as described in Section 4.3.

Intuitively, the following theorem states that the probability that in a run
of Ordinos more than k votes of honest voters have been manipulated but
the judge J nevertheless accepts the run is bounded by δk(pverify).

Theorem 5 (Verifiability). Under the assumptions (V1), (V2) and (V3)
stated above, the protocol POrdinos(nvoters, ntrustees, µ, pverify, ftally) is (γ(k, ϕ),

δk(pverify))-verifiable by the judge J where δk(pverify) = (1− pverify)d
k+1
2
e.

The intuition and reasoning behind this theorem is as follows: In order
to break γ(k, ϕ), the adversary has to manipulate more than k votes of
honest voters (actually less, see below). Due to the NIZKPs and signatures
employed, we can show that such a manipulation is not detected only if

82

none of the affected honest voters perform their verification procedure. The
probability for this is (1−pverify)d

k+1
2
e: the exponent is not k+1, as one might

expect, but dk+1
2
e because, according to the formal definition of γ(k, ϕ) (see

Section 2.3.2), if the adversary changes one vote of an honest voter from one
choice to another, the distance between the actual result and the manipulated
one increases by two.

In [KTV10b], it was shown that accountability implies verifiability. The
verifiability theorem therefore follows immediately from the stronger account-
ability result presented next.

Accountability. For the accountability theorem, we make the same as-
sumptions (V1) to (V3) as for the verifiability theorem above, with the fol-
lowing refinement. Since, in general, verifiability does not imply accountabil-
ity, we need to assume the MPC protocol not only provides verifiability but
also accountability. Hence, we refine the verifiability assumption (V3) above
as follows so that Ordinos guarantees accountability.

(V3) The MPC protocol PMPC enjoys individual accountability (w.r.t. the
goal γ(0, ϕ) and accountability level 0), meaning that if the outcome of the
protocol does not correspond to ftally, then at least one of the trustees can
always be blamed individually, because in this case the NIZKP πMPC men-
tioned in Section 4.2 fails. (Our instantiation presented in Section 4.6 fulfills
this assumption.)

Now, in order to state our theorem for accountability of Ordinos, we use
the following accountability property Φk which covers the goal γ(k, ϕ).9

Let χi denote the set of runs of an instance of POrdinos where voter Vi
complains that she did not get a receipt from AS. In such runs the judge
cannot be sure who to blame individually (Vi or AS?). But he does know
that at least one of them is dishonest (recall the discussion in Section 4.2).
This is captured by the accountability constraint χi ⇒ dis(Vi) ∨ dis(AS).

Similarly, let χ′i contain all runs of POrdinos where the voter Vi complains

that she did not vote but her name is contained in a ballot in ~b published by
AS. Then, the accountability constraint for this situation is χ′i ⇒ dis(Vi) ∨
dis(AS).

The accountability theorem for Ordinos (see below) states that if the ad-
versary breaks the goal γ(k, ϕ) in a run of POrdinos but neither χi nor χ′i occur
(for some voter Vi), then (at least) one misbehaving party can be blamed
individually (with a certain probability). The accountability constraint for
this situation is

¬γ(k, ϕ) ∧ ¬χ⇒ dis(AS)|dis(T1)| . . . |dis(Tntrustees),

9Observe that the accountability properties for Ordinos and sElect (Section 3.5) are
essentially the same.

83

where χ =
⋃
i∈{1,...,nvoters}(χi ∪ χ

′
i).

For POrdinos and the goal γ(k, ϕ), we define the accountability property
Φk to consist of the constraints mentioned above for the cases χi, χ

′
i (for all

i ∈ {1, . . . , nvoters}), and ¬γ(k, ϕ) ∧ ¬χ. Clearly, this accountability prop-
erty covers ¬γ(k, ϕ) by construction, i.e., if γ(k, ϕ) is not satisfied, these
constraints require the judge J to blame some party.

Note that in the runs covered by the last constraint of Φk all verdicts
are atomic. This means that Φk requires that except for the cases where χ
occurs, whenever the goal γ(k, ϕ) is violated, an individual party is blamed
(individual accountability).

Theorem 6 (Accountability). Under the assumptions (V1), (V2) and (V3)
stated above and the mentioned judging procedure of the judge J, the proto-
col POrdinos(nvoters, ntrustees, µ, pverify, ftally) is (Φk, δk(pverify))-accountable for J,

where δk(pverify) = (1− pverify)d
k+1
2
e

Proof. See Appendix C.3.

Note that, possibly surprisingly, our results show that the level of verifi-
ability and accountability provided by Ordinos is independent of the result
function ftally, and hence, independent of how much of the full tally is hidden
by ftally: less information might give the adversary more opportunities to
manipulate the result without being detected. Roughly speaking, the reason
is that the goal γ(k, ϕ) is concerned with the actual input to the voting pro-
tocol (as provided by the voters) rather than its output (e.g., the complete
result or only the winner).

4.5 Privacy

In this section, we carry out a rigorous analysis of the vote privacy of Ordinos.
We show that Ordinos has a high level of privacy for the class of adversaries
which are not willing to take a high risk of being caught cheating. More
specifically, we show that for this class of adversaries the level of privacy is
ideal, i.e., coincides with the level of privacy an ideal voting protocol achieves,
where merely the election result according to the (tally-hiding) result function
considered is published.

After that, to better understand the relationship between the privacy
level of Ordinos and the (tally-hiding) result function used, we provide a
detailed comparison between the “traditional” result function (number of
votes per candidate) and two important tally-hiding result functions (only
the winner(s) or the overall ranking). These results demonstrate that Ordinos

84

can dramatically improve vote privacy, depending on the tally-hiding result
function.

Privacy result. As in sElect (or Helios), an adversary who controls the au-
thentication server in Ordinos could drop or replace all ballots except for the
one of the voter under observation. The final result would then contain only
the vote of the voter under observation, and hence, the adversary could eas-
ily tell how this voter voted, which breaks privacy. However, such an attack
is extremely risky: recall that the probability of being caught grows expo-
nentially in the number k of honest votes that are dropped or changed (see
Section 4.4). Thus, in the above attack where k is big, the probability of the
adversary to get caught would be very close to 1. In the context of e-voting,
where misbehaving parties that are caught have to face severe penalties or
loss of reputation, this attack seems completely unreasonable. Therefore, as
for sElect, we consider k-risk-avoiding adversaries (Section 3.6.1) to analyze
the privacy level of Ordinos.

We now state that Ordinos provides a high level of privacy w.r.t. k-risk-
avoiding adversaries and in the case that at most t−1 trustees are dishonest,
where t is the decryption threshold of the underlying encryption scheme:
clearly, if t trustees were dishonest, privacy cannot be guaranteed because
an adversary could simply decrypt every ciphertext in the list of ballots. By
“high level of privacy” we mean that Ordinos provides δ-privacy for a δ that
is very close to the ideal one.

Assumptions. To prove that the privacy level of Ordinos is essentially
the ideal one, we make the following assumptions about the primitives we
use (see also Section 4.2): the public-key encryption scheme E is IND-CPA-
secure, the signatures are EUF-CMA-secure, the proofs πKeyShareGen and πEnc

are NIZKPs, and the MPC protocol realizes an ideal functionality which
essentially takes a vector of ciphertexts and returns ftally evaluated on the
corresponding plaintexts (see Appendix A.1, A.3 and B for details).

The level of privacy of Ordinos clearly depends on the number of ballots
cast by honest voters. In our analysis, to have a guaranteed number of votes
by honest voters, we assume that honest voters do not abstain from voting.
Note that the adversary would anyway know which voters abstained and
which did not. Technically, our assumption means that in the distribution µ
the probability of abstention is 0.

We prove the privacy theorem for Ordinos for adversaries that (i) are
k-risk-avoiding, (ii) do not corrupt more than t− 1 trustees, and (iii) leave
at least nhonest

voters voters uncorrupted, i.e., given an instance, the set of runs
for which these conditions are not met should be negligible. The mapping
A to sets of admissible adversaries is defined accordingly. Now, the privacy

85

theorem for Ordinos says that the level of privacy of Ordinos for this class of
adversaries is the same as the privacy level δideal

(nvoters,nhonest
voters−k,µ)

(fres) for the ideal

protocol with nhonest
voters − k honest voters (see Section 2.5.2 for the definition of

the ideal voting protocol and its privacy level).

Theorem 7 (Privacy). Under the assumptions stated above and with the
mapping A as defined above, the protocol POrdinos(nvoters, ntrustees, µ, pverify, ftally)
achieves δideal

(nvoters,nhonest
voters−k,µ)

(fres)-privacy w.r.t. A where the result function fres

first counts the number of votes per candidate and then evaluates ftally.
10

Proof. See Appendix C.4.

As discussed, since the risk of being caught cheating increases exponen-
tially with k, the number of changed votes k will be rather small in practice.
But then the privacy theorem tells us that manipulating just a few votes of
honest voters does not buy the adversary much in terms of weakening pri-
vacy. In fact, as illustrated below, even with only 15 honest voters the level
of privacy does not decrease much when the adversary changes the honest
votes by only a few. Conversely, the (tally-hiding) result function can very
well have a big effect on the level of privacy of the ideal protocol, and hence,
also on Ordinos: whether only the winner of an election is announced or the
complete result is published typically has a big effect on the level of privacy
provided by the system.

Privacy comparison of result functions. In the following, we compare
the optimal privacy levels for the following result functions for which, among
others, we instantiated and implemented the generic Ordinos voting protocol
(see Section 4.6 and 4.7):

• frank where the ranking of all candidates is published (but not the num-
ber of votes per candidate),

• fwin where only the winner of the election is published (again, no num-
ber of votes), and

• fcomplete where the whole result of the election is published, i.e., the
number of votes per candidate (as in almost all verifiable e-voting sys-
tems, including, e.g., Helios)

10Recall that in Ordinos, the tallying function ftally is evaluated over the homomorphi-
cally aggregated votes, i.e., the vector that encrypts the total number of votes for each
candidate. Conversely, the more general result function fres of the ideal voting protocol
receives the voters’ choices as input. Hence, fres needs to first aggregate the votes and
then apply ftally.

86

We denote the corresponding privacy levels by δidealrank , δidealwin , and δidealcomplete, re-
spectively.

1. In general, more information means less privacy. Depending on the
distribution on the candidates, in general δidealcomplete is bigger than δidealrank

which in turn is bigger than δidealwin ; see Figure 4.1 for an example. An-
other, more extreme example is given in Figure 4.2.

2. The balancing attack. As just mentioned, the difference between δidealwin

and δidealcomplete can be very big if one choice has a bigger probability. We
now illustrate that sufficiently many dishonest voters can help to cancel
out the advantage of tally-hiding functions in terms of the privacy of
single voters. We call this the balancing attack. More specifically,
the adversary can use dishonest voters to balance the probabilities for
candidates. For illustration purposes consider the case of ten honest
voters and two candidates, where the first candidate has a probability
of 0.9. Now, if eight dishonest voters are instructed to vote for the
second candidate, the expected total number of votes for each candidate
is nine. Hence, the choice of the voter under observation is indeed
relatively often crucial for the outcome of fwin, given this distribution.
As the number of dishonest voters is typically small in comparison to
the number of honest voters, this balancing attack is not effective for
big elections, but it might be in small elections, with a few voters and
a few candidates; the latter is illustrated by Figure 4.3.

3. Sometimes ranking is not better than the complete result. If candidates
are distributed uniformly, it is easy to show that δidealcomplete = δidealrank . The
reason is that the best strategy for the adversary to decide whether
the observed voter voted for ch0 or ch1 is to choose ch0 if ch0 gets more
votes than ch1, and this strategy is applicable even if only the ranking is
published. We note that fwin is still better, i.e., δidealwin < δidealcomplete = δidealrank .
A concrete example is given in Figure 4.4.

We note that these results yield a lower bound for privacy for tally-hiding
systems in general.

4.6 Instantiation

In this section, we provide an instantiation of the generic Ordinos protocol
with concrete cryptographic primitives; in Section 4.7, we then describe our

87

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 50
number of honest voters (without the observed voter)

p
ri

va
cy

le
ve

l
(δ

)

fcomplete

frank
fwin

Figure 4.1: Level of privacy (δ) for the ideal protocol with three candidates,
p1 = 0.6, p2 = 0.3, p3 = 0.1 and no dishonest voters.

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 50
number of honest voters (without the observed voter)

p
ri

va
cy

le
ve

l
(δ

)

fcomplete

fwin

Figure 4.2: Level of privacy (δ) for the ideal protocol with two candidates
and no dishonest voters. Probability for abstention: 0.3, p1 = 0.1, p2 = 0.6.

88

0

0.1

0.2

0.3

0.4

0.5

0 15 20 25 30 50
number of dishonest voters

p
ri

va
cy

le
ve

l
(δ

)

fcomplete

fwin

Figure 4.3: Level of privacy (δ) for the ideal protocol with two candidates
and n = 100 honest voters. Probability for abstention: 0.3, p1 = 0.1, p2 = 0.6

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 50
number of honest voters (without the observed voter)

p
ri

va
cy

le
ve

l
(δ

)

fcomplete = frank
fwin

Figure 4.4: Level of privacy (δ) for the ideal protocol with 5 candidates and
a uniform distribution on the candidates.

89

implementation of this instantiation of Ordinos and provide several bench-
marks, demonstrating its practicability.

Tally-hiding result functions. Our instantiation can be used to realize
many different practically relevant tally-hiding result functions. They all
have in common that they reveal chosen parts of the final candidates’ ranking
(with or without the number of votes a candidate received), for example, the
complete ranking, only the winner of the election, the ranking or the set of
the best/worst three candidates, only the winner under the condition that
she received at least, say, fifty percent of the votes, etc. We describe how to
realize these different variants below.

Cryptographic primitives. For our instantiation we use the standard
threshold variant of the Paillier public-key encryption scheme [Pai99] as the
(t, ntrustees)-threshold public-key encryption scheme E . The main reason for
choosing Paillier instead of exponential ElGamal [Gam84] (as in the original
Helios protocol) is that for the MPC protocol below the decryption algorithm
Dec of E needs to be efficient. This is not the case for exponential ElGamal,
where decryption requires some brute forcing in order to obtain the plaintext.

The NIZKP πEnc that the voters have to provide for proving knowledge
and well-formedness of the chosen ch ∈ C can be based on a standard proof
of plaintext knowledge for homomorphic encryption schemes, as described
in [SV15], in combination with [CDS94].

The NIZKP πKeyShareGen depends on the way public and private keys are
shared among the trustees. One could, for example, employ the protocol
by Algesheimer et al. [ACS02], which includes a NIZKP πKeyShareGen. Also,
solutions based on trusted hardware are conceivable. Note that setting up
key shares for the trustees is done offline, before the election starts, and
hence, this part is less time critical. For simplicity, in our implementation
(see Section 4.7), we generate key shares centrally for the trustees, essentially
playing the role of a trusted party in this respect.

As for the signature scheme S, any EUF-CMA-secure can be used.
The most challenging part of the instantiating of Ordinos is to con-

struct an efficient MPC protocol PMPC for evaluating practically relevant
tally-hiding result functions, which at the same time satisfies the conditions
for verifiability/accountability (see Section 4.4) as well as privacy (see Sec-
tion 4.5). We now describe such a construction.

Overview of PMPC. The cornerstone of our instantiation of PMPC is a secure
MPC protocol P gt

MPC that takes as input two secret integers x, y and outputs
a secret bit b that determines whether x ≥ y, i.e., b = (x ≥ y).

We instantiate P gt
MPC with the “greater-than” MPC protocol by Lipmaa

and Toft [LT13] which has been proposed for an arbitrary arithmetic blackbox

90

(ABB), which in turn we instantiate with the Paillier public-key encryption
scheme, equipped with NIZKPs from [SV15]. Lipmaa and Toft demonstrated
that their protocol is secure in the malicious setting. Due to the NIZKPs this
protocol employs, it even provides individual accountability in our specific
instantiation in the sense of Section 2.3, i.e., if the outcome of the protocol
is incorrect, everyone can identify the misbehaving trustee(s). Importantly,
the protocol by Lipmaa and Toft comes with sublinear online complexity
which is superior to all other “greater-than” MPC protocols to the best of
our knowledge. This is confirmed by our benchmarks which show that the
communication overhead is quite small (see Section 4.7).

We also use the secure MPC protocol P eq
MPC by Lipmaa and Toft [LT13]

which secretely evaluates equality of two secret integers. Similarly to P gt
MPC,

this protocol, in our instantiation, also provides individual accountability.
Now, PMPC is carried out in two phases in Ordinos:

1. Given the vector~cunsorted of the encrypted number of votes per candidate
(see Section 4.2), the trustees collaboratively run several instances of
the greater-than-test P gt

MPC in order to obtain a ciphertext vector ~ccomp

which encrypts the overall ranking of the candidates.

2. The resulting ciphertext vector (plus possibly ~cunsorted) is used to realize
the desired tally-hiding result function.

These two phases are described in more detail in what follows.

First phase: Computing the secret ranking. Recall that in Ordi-
nos each ballot b is a tuple (id,~c, πEnc), where id is the voter’s id, ~c =
(c[1], . . . , c[ncand]) is a ciphertext vector that encrypts the voter’s choice, and
πEnc is a NIZKP for proving knowledge of the choice/plaintexts and well-
formedness of the ciphertext vector (e.g., for proving that exactly a single
c[i] ∈ ~c encrypts 1, while all other ciphertexts in ~c encrypt 0, if a voter can
give only one vote to one candidate/option). The input to the tallying phase
consists of the ballots with valid NIZKPs πEnc.

In the first step of the tallying phase, the ciphertext vectors ~c of all
valid ballots are homomorphically summed up to obtain a ciphertext vector
~cunsorted = (cunsorted[1], . . . , cunsorted[ncand]) where cunsorted[i] encrypts the total
number of votes for the ith candidate.

In the second step, we essentially apply the direct sorting algorithm by
Çetin et al. [ÇDSS15] to ~cunsorted.

More precisely, in what follows we denote by Dec(c) the distributed de-
cryption of a ciphertext c by the trustees. Now, for each pair of candi-
dates/options, say i and j, the trustees run the equality test P eq

MPC with
input (cunsorted[i], cunsorted[j]) and output ceq[i, j] which then decrypts to 1

91

if Dec(cunsorted[i]) equals Dec(cunsorted[j]) and to 0 otherwise. Clearly, the

trustees need to run the protocol P eq
MPC only (ncand−1)ncand

2
many times because

ceq[i, i] always decrypts to 1 and ceq[j, i] = ceq[j, i]. In fact, this step (which
comes with almost no communicational and computational overhead) will be
used to speed up the following step.

For each pair of candidates/options, say i and j, the trustees now run the
greater-than-test P gt

MPC with input (cunsorted[i], cunsorted[j]) and output cgt[i, j]
which decrypts to 1 if we have Dec(cunsorted[i]) ≥ Dec(cunsorted[j]) and to 0
otherwise. Thanks to the previous step, the trustees need to run the P gt

MPC

protocol only (ncand−1)ncand

2
many times because cgt[i, i] always decrypts to 1

and cgt[j, i] can easily be computed from cgt[i, j] because cgt[j, i] = Enc(1)−
cgt[i, j] + ceq[i, j].

All of these ciphertexts are stored in an ncand × ncand comparison matrix
Mcomp:

cgt[1, 1] cgt[2, 1] . . . cgt[ncand, 1]
cgt[1, 2] cgt[2, 2] . . . cgt[ncand, 2]

...
...

...
...

cgt[1, ncand] cgt[2, ncand] . . . cgt[ncand, ncand]

Based on this matrix, everyone can compute an encrypted overall ranking

of the candidates: for each column i of Mcomp, the homomorphic sum

~ccomp[i] =

ncand∑
j=1

cgt[i, j]

encrypts the total number of pairwise “wins” of the ith candidate against
the other candidates, including i itself. For example, if the ith candidate is
the one which has received the fewest votes, then Dec(~ccomp[i]) = 1 because
Dec(cgt[i, i]) = 1, and if it has received the most votes, then Dec(~ccomp[i]) =
ncand. We collect all of these ciphertexts in a ranking vector

~ccomp = (~ccomp[1], . . . ,~ccomp[ncand]) .

Second phase: Calculating the election result. Using ~ccomp and
~cunsorted, we can, for example, realize the following families of tally-hiding
result functions and combinations thereof. First note that, for example,
Dec(~ccomp) = (6, 6, 6, 3, 3, 3) is a possible plaintext ranking vector, which says
that the first three candidates are the winners, they are on position 1. As a
result, no one is on position 2 or 3 (following common conventions). The last
three candidates are on position 4; no one is on position 5 or 6. Note that,
for example, Dec(~ccomp) = (6, 6, 6, 3, 3, 2) is not a possible plaintext ranking
vector.

92

Revealing the candidates on the first n positions only. There are three
variants:

1. Without ranking : For all candidates i, the trustees run the greater-
than test P gt

MPC with input (~ccomp[i],Enc(ncand − n + 1)) and decrypt
the resulting ciphertext. Candidate i belongs to the desired set if and
only if the decryption yields 1. The case n = 1 means that only the
winner(s) is/are revealed.

2. With ranking : For all candidates i, the trustees run the equality-test
P eq
MPC with input (~ccomp[i],Enc(ncand − k + 1)) for all 1 ≤ k ≤ n and

decrypt the resulting ciphertext. Then, candidate i is on the k-th
position if and only if for k the test returns 1. If no test returns 1, i is
not among the candidates on the first n positions.

3. Including the number of votes : The trustees decrypt the ciphertext
cunsorted[i] of each candidate i that has been output in the previous
variant.

Revealing the candidates on the last n positions. Observe that we can
construct a less-than test P lt

MPC from the results of the equality tests P eq
MPC

and the greater-than tests P gt
MPC for free: clt[i, j] = Enc(1)− cgt[i, j] + ceq[i, j].

Now, replace all cgt[i, j] in the encrypted comparison matrix Mcomp with
clt[i, j]. Then, the same procedures as described for the n best positions
above yield the desired variants for the n worst positions.

Threshold tests. For a given threshold τ , the trustees run the greater-than
test P gt

MPC with input (cunsorted[i],Enc(τ)) for all candidates i. For example,
with τ being half of the number of votes, the trustees can check whether
there is a candidate who wins the absolute majority of votes.

Example of a combination. Consider an election that is carried out in two
rounds. In the first round, there are several candidates. If one of them wins
the absolute majority of votes, she is the winner. If not, there is a second
round between the candidates on the first two positions. The winner of the
second round wins the election. Using our instantiation, no unnecessary
information needs to be leaked to anybody in any round of such an election.

In what follows, we denote (tally-hiding) results functions realized as
described above by fOrdinos.

Accountability of our Instantiation of Ordinos. Our instantiations
of P gt

MPC and P eq
MPC provide individual accountability, i.e., everyone can tell

whether a trustee misbehaved, mainly due to the NIZKPs employed. More
precisely, in P gt

MPC and P eq
MPC, the trustees only exchange shared decryptions

(of some intermediate ciphertexts) each of which is equipped with a NIZKP

93

of correct decryption. Hence, the output of the MPC protocols can only be
false if one of the shared decryptions is false, and in this case, the responsible
trustee can be identified. This implies that our protocol PMPC provides indi-
vidual accountability w.r.t. the goal γ(0, ϕ) and accountability tolerance 0 up
to the point where ~ccomp is computed (with ϕ = hon(S) ∧ hon(J) ∧ hon(B) as
before). In the second phase of PMPC, again P gt

MPC and P eq
MPC are used as well

as distributed verifiable decryption (which anyway is part of P gt
MPC and P eq

MPC).
This phase therefore also provides individual accountability w.r.t. the goal
γ(0, ϕ) and accountability tolerance 0. Altogether, we obtain the following
theorem.

Theorem 8 (Accountability (MPC)). Let ϕ = hon(S) ∧ hon(J) ∧ hon(B).
Then, the protocol PMPC, as defined in Section 4.6, provides individual ac-
countability for the goal γ(0, ϕ) and accountability level 0.

With this, assumption (V3) for Theorem 6 is satisfied. Since the dis-
tributed Paillier public-key encryption scheme is correct, and the signature
scheme S is EUF-CMA-secure, and the proof πEnc is a NIZKP, also assump-
tion (V1) is satisfied. With the judge J defined analogously to the one of
the generic Ordinos system, we can therefore conclude that our instantiation
enjoys the same level of accountability level as the generic Ordinos system.

Corollary 1 (Accountability). The instantiation of POrdinos(nvoters, ntrustees, µ,
pverify, fOrdinos) presented above is (Φk, δk(pverify))-accountable w.r.t. the judge

J, where δk(pverify) = (1− pverify)d
k+1
2
e.

Privacy of our Instantiation of Ordinos. Lipmaa and Toft [LT13]
showed that P gt

MPC and P eq
MPC are secure MPC protocols in a completely mali-

cious setting under the assumption that the underlying ABB is realized cor-
rectly. In our instantiation, the ABB is correctly realized by the (standard)
NIZKPs from [SV15] and under the assumption that at least the threshold
of t trustees are honest. Now, it is easy to show that, given P gt

MPC and P eq
MPC,

the sorting algorithm that in the end yields ~ccomp does not leak any infor-
mation (the same operations are performed on all ciphertexts and all results
are encrypted). Similarly, the evaluation of fOrdinos as discussed above also
does not leak any information except for the final result according to fOrdinos.
From this we can conclude that our instantiation of PMPC realizes the ideal
functionality IMPC defined in Appendix B, which given a vector of encrypted
integers (in our case cunsorted) returns the result of fOrdinos evaluated on the
(plaintext) integers.

Theorem 9 (Privacy (MPC)). The protocol PMPC, as defined above, realizes
IMPC for tally-hiding result functions fOrdinos as described above.

94

With this, our instantiation of the generic Ordinos system satisfies all
assumptions made in Theorem 7, and hence, as an immediate corollary of
this theorem we obtain that this instantiation essentially provides the same
level of privacy as the ideal voting protocol for tally-hiding result functions
fOrdinos.

Corollary 2 (Privacy). The above instantiation of POrdinos(nvoters, ntrustees, µ,
pverify, fOrdinos) with nhonest

voters honest voters achieves δideal
(nvoters,nhonest

voters−k,µ)
(fres)-privacy

w.r.t. the mapping A to sets of admissible adversaries, with A and fres as in
Theorem 7.

4.7 Implementation

We implemented Ordinos for the instantiation described in Section 4.6. The
main purpose of our implementation was to be able to evaluate the perfor-
mance of the system in the tallying phase, which is the most time critical
part. Our benchmarks therefore concentrate on the tallying phase. In par-
ticular, we generated the offline material for P eq

MPC and P gt
MPC in a trusted way

(see Section 4.6 for alternatives).
Recall that the tallying phase consists of two parts. In the first part, the

trustees generate ~ccomp for input ~cunsorted. In the second part, the trustees
evaluate a specific tally-hiding result function with input ~ccomp (and possi-
bly ~cunsorted). The first part, in particular constructing Mrank, accounts for
the vast communication and computation complexity. We provide several
benchmarks for running the first part depending on the number of voters,
trustees, and candidates for the scenarios where the trustees (i) run on one
machine, (ii) communicate over a local network, or (iii) over the Internet.
We also demonstrate that the second part (evaluating a specific tally-hiding
result function) is negligible in terms of runtime.

Our implementation is written in Python, extended with the gmpy2 mod-
ule to accelerate modular arithmetic operations. The key length of the un-
derlying Paillier encryption scheme is 2048 bits; see below for details of the
machines.

We first note that the length of encrypted integers to be compared by
P gt
MPC determines the number of recursive calls of P gt

MPC from [LT13]. This
protocol, in a nutshell, splits the inputs in an upper and lower half and
calls itself with one of those halves, depending on the output of the previous
comparison. Hence, we use powers of 2 for the bit length of the integers. On
a high level, this is also the reason for the logarithmic online complexity of
P gt
MPC. For our implementation, we assume that each voter has one vote for

95

each candidate. Therefore, we use 216 bit integers for less than 216 voters
and 232 bit integers for less than 232 voters.

Benchmarks and results In summary, the benchmarks illustrate that our
implementation is quite practical, even for an essentially unlimited number
of voters and several trustees independently of whether the implementation
runs over a local network or the Internet. The determining factor in terms
of performance is the number of candidates. More specifically, in what fol-
lows we first present our benchmarks for the first part of the tallying phase
(computing ~ccomp) and then briefly discuss the second part.

Figure 4.5 demonstrates that the running time is independent of any
specific number of voters (as long as it is smaller than the maximum number
allowed, in this case less than 232 − 1 voters).

The blue/lower graph in Figure 4.6 shows that the running time of our
implementation is essentially independent of the number of trustees: The
time difference for the different numbers of trustees (two to eight on a local
network) are less than three seconds, and hence, not feasible in this figure.
This is due to the logarithmic online complexity of P gt

MPC.
Figure 4.6 also demonstrates that the parameter that determines the run-

ning time is the number of candidates, as P gt
MPC needs to be invoked O(n2

cand)
times to construct Mrank (see Section 4.6).

Furthermore, Figure 4.6 shows that the running time is quite independent
of the specific networks over which the trustees communicate. In the local
network, where we run each trustee (up to 8) on an ESPRIMO Q957 (64bit,
i5-7500T CPU @ 2.70GHz, 16 GB RAM), the running time is essentially
the same as when we run three trustees on three different cores of the same
machine (they differ by at most two seconds). In the setting Internet 1, we
have used the same machines and connected them with a VPN running on
a server in a different city so that the trustees effectively communicate over
the Internet (via a VPN node in a different city). The setting Internet 2 is
more heterogeneous: we used different machines11 for the trustees, located in
different cities (and partly countries), with two connected to the Internet via
Wifi routers in home networks. They were all connected over the Internet to
the same VPN as in Internet 1. Importantly, the difference between Internet
1 and Internet 2 is due to two factors: (i) The slowest machine dictates the
overall performance since the other machines have to wait for the messages
of this machine. While the ESPRIMOs perform a greater-than test locally

11One machine is as above, the second is an Intel Pentium G4500 (64bit, 2x3.5 GHz
Dualcore, 8 GB RAM, running Windows 10), and the third is an Intel Core i7-6600U
(CPU @ 2.60GHz, 2801 Mhz, 2 Cores 8 GB RAM, running Windows 10).

96

200000 400000 600000 800000 1000000
voters

1.3

1.4

1.5

1.6

tim
e

[m
in

]

Runtime

Figure 4.5: Three trustees on a local network and five candidates; 32-bit
integers for vote counts.

3 candidates 5 candidates
voters [CPST18] Ordinos [CPST18] Ordinos
210 − 1 4.26 0.26 (16 bit) 9.53 1.27 (16 bit)
210 − 1 4.26 0.30 (32 bit) 9.53 1.35 (32 bit)
220 − 1 8.53 0.30 (32 bit) 19.05 1.36 (32 bit)

Table 4.1: Comparison to [CPST18] (three trustees, time in minutes).

in about 8.5 seconds, the slowest machine in this setup needs 10.5 seconds.
(ii) The Internet connections from the home networks are slower than those
in Internet 1.

Finally, we benchmarked a tally-hiding function for the second part of
the tallying phase, namely the one which reveals the set (without ranking)
of the candidates on the first n positions (see Section 4.6). This is in fact the
most costly function among the functions listed in Section 4.6 as it requires
to perform a greater-than test with every entry of ~ccomp; equality-tests are
much cheaper. Note that the runtime of this function does not depend on n.
For 40 candidates, we needed about 6.33 minutes for this function, with three
trustees and 16-bit integers for vote counts, which is two orders of magnitude
less than what is needed for the first part of the tallying phase. Hence, the
runtime for the second phase is negligible. Since this part needs a linear
number of greater-than operations in the number of candidates and the first
part is quadratic, this was to be expected.

97

5 10 15 20 25 30 35 40
candidates

0

25

50

75

100

125

150

175

tim
e

[m
in

]

Runtime

local network
2-8 trustees/
single machine
3 trustees
internet 1
3 trustees
internet 2
3 trustees

Figure 4.6: Trustees on a single machine, local network and on the Internet;
16-bit integers for vote counts.

98

4.8 Related Work and Discussion

In this section, we compare Ordinos with the only three tally-hiding voting
protocols [Ben86, SP15, CPST18] that have been proposed so far, and a
further voting protocol [CPRT18] that employs secure MPC for improving
privacy and coercion-resistance, but without being fully tally-hiding.

Benaloh [Ben86] introduced the idea of tally-hiding e-voting and designed
the first protocol for tally-hiding more than thirty years ago. In contrast to
modern e-voting systems, in which trust is distributed among a set of trustees,
Benaloh’s protocol assumes a single trusted authority which also learns how
each single voter voted. Ordinos, in contrast, distributes trust among a set
of trustees. As we have proven, none of the trustees gains more information
about a voter’s choice than what can be derived from the final published
(tally-hiding) result. It seems infeasible to improve Benaloh’s protocol in
this respect. Additionally, the system lacks a security proof and also has not
been implemented.

Szepieniec and Prenell [SP15] proposed a tally-hiding voting protocol for
which they develop a specific greater-than MPC protocol. Unfortunately, this
MPC protocol is insecure, it leaks some information. The authors discuss
some mitigations but do not solve the problem (see [SP15], Appendix A for
details). Furthermore, as discussed in Section 5.11, the verifiability definition
proposed by the authors is problematic. Finally, just as the protocol by
Benaloh, this protocol has not been implemented.

Canard et al. [CPST18] have recently proposed a tally-hiding e-voting
protocol for a different kind of election than considered here: in their sys-
tem, the voters rank candidates and the winner of the election is calculated
according to specific rules. The focus of their work was on designing and
implementing the MPC aspects of the tallying phase. They do not design a
complete e-voting protocol (including the voting phase, etc.). In particular,
modeling a complete protocol and analyzing its security was not in the scope
of the paper. In Table 4.1, we briefly compare the performance of our im-
plementation with theirs, using the only available benchmarks published in
[CPST18], where the tallying is done on a single machine, i.e., all trustees run
on a “single computer with physical CPU cores (i5-4300U)”. For the purpose
of this comparison, we run our implementation also only on a single machine,
using the same key size as Canard et al., namely 2048 bits. However, we note
again that Canard et al. tackle a different kind of elections, making a fair
comparison hard. Having said this, as can been seen from Table 4.1, our
implementation is 5 to 13 times faster than the one by Canard et al. Note
that the runtime difference of Ordinos for different numbers of voters is due
to different bit lengths of integers. For 210 voters we use 16-bit integers and

99

for 220 we use 32-bit integers. Since the round complexity of the MPC pro-
tocol [ST06] that is used by Canard et al. is much higher than the one of the
MPC protocol that we implemented, we conjecture that the differences would
further increase when the trustees in [CPST18] would actually be connected
over a network. As demonstrated in Section 4.7, in our case a network does
in fact not cause much overhead.

Also very recently, Culnane et al. [CPRT18] proposed an instant-runoff
voting (IRV) protocol in which the voters encrypt their personal ranking
and the trustees run a secure MPC protocol in order to evaluate the winner
without decrypting the single voters’ encrypted rankings. The focus of this
work was on mitigating so-called Italian attacks. We note that the protocol
by Culnane et al. has not been designed to hide the tally completely: some
information about the ranking of candidates always leaks.

Alternatively to all of these protocols and to Ordinos, one could, of course,
also try to employ a generic secure MPC protocol for tally-hiding voting
(e.g., [DPSZ12]). However, to the best of our knowledge, there is no MPC
protocol in the literature that provides what we require for Ordinos all at the
same time: accountability (sometimes called identifiable abort in the context
of secure MPC), privacy, practicality, and a suitable threshold structure.
Furthermore, our instantiation of Ordinos seamlessly extends Helios, which
is, as mentioned, one of the most prominent e-voting systems.

100

Chapter 5

Verifiability Notions for
E-Voting Protocols

For the systematic security analysis of verifiable e-voting systems, one chal-
lenge has been to formally and precisely capture the meaning of verifia-
bility. While the first attempts at a formal definition stem from the late
1980s [Ben87], new definitions are still being put forward, with many defini-
tions having been proposed in the last few years [CFP+10, KRS10, JCJ10,
KTV10b, CGGI14, KZZ15b, KZZ15b, KZZ15a, SFC15, SP15].

The definitions differ in many aspects, including the classes of protocols
they capture, the underlying models and assumptions, the notation, and
importantly, the formulations of the very core of the meaning of verifiability.

This is an unsatisfying state of affairs, which leaves the research on the
verifiability of e-voting protocols and systems in a fuzzy state and raises
many questions, such as: What are the advantages, disadvantages, problems,
and limitations of the various definitions? How do the security guarantees
provided by the definitions compare? Are they similar or fundamentally
different? Answering such questions is non-trivial. It requires some common
basis on which the definitions can be discussed and compared.

5.1 Contributions

First, we show that the essence of all formal definitions of verifiability pro-
posed in the literature so far can be cast in one framework. We choose the
framework proposed by Küsters, Truderung, and Vogt [KTV10b] for this pur-
pose (Section 2.3). The generic definition of verifiability in this framework
(Definition 1) is applicable to essentially any kind of protocol, with a flexible
way of dealing with various trust assumptions and types of corruption. Most

101

importantly, it allows us to capture many kinds and flavors of verifiability.
The casting of the different definitions in one framework is an important

contribution by itself as it yields a uniform treatment of verifiability. This
uniform treatment enables us to provide a detailed and systematic compari-
son of the different formal definitions of verifiability proposed in the literature
until now. We present thorough discussions of all relevant definitions and
models concerning their advantages, disadvantages, problems, and limita-
tions, resulting in various new insights concerning the definitions themselves
and their relationships. Among others, it turns out that while the definitions
share a common intuition about the meaning of verifiability, the security
guarantees that are actually captured and formalized often vary, with many
technical subtleties involved. Cast in tailored models, different, sometimes
implicit, and often unnecessary assumptions about the protocol structure or
the trust assumptions are made. For some definitions, we point out severe
limitations and weaknesses.

Finally, we distill these discussions and insights into detailed guidelines
that highlight several aspects any verifiability definition should cover. Based
on the KTV framework, we provide a solid, general, and flexible verifiability
definition that covers a wide range of protocols, trust assumptions, and voting
infrastructures. Even if alternative frameworks are used, for example in order
to leverage specific proof techniques or analysis tools, our guidelines provide
insights on which parameters may be changed and what the implications of
such modifications are.

This lays down a common, uniform, and yet general basis for all design
and analysis efforts of existing and future e-voting protocols. As such, our
work offers a well-founded reference point for future research on the verifia-
bility of e-voting systems and protocols.

Structure of this chapter. In Sections 5.2 to 5.11, we cast various defini-
tions in this framework and based on this we carry out detailed discussions
on these definitions. The mentioned definitions and guidelines we distill from
our discussions, together with various insights, are presented in Section 5.12.

5.2 A Specific Verifiability Goal by Küsters

et al.

In [KTV10b], Küsters et al. also propose a specific family of goals for e-voting
protocols that they used in [KTV10b] as well as subsequent works [KTV14,
KTV12b, KTV11]. We present this family of goals below, as well as the
way Küsters et al. have instantiated the model when applied to concrete

102

protocols. Since this is a specific instantiation of the KTV framework, we
can omit the casting of their definition in this framework.

5.2.1 Model

When applying the KTV framework in order to model specific e-voting pro-
tocols, Küsters et al. model static corruption of parties. That is, it is clear
from the outset whether or not a protocol participant (and in particular a
voter) is corrupted. An honest voter V runs her honest program πV with her
choice ch ∈ C. This choice is called the actual choice of the voter, and says
how the voter intends to vote.

5.2.2 Verifiability

While just as in Definition 1, the verifiability definition proposed by Küsters
et al. does not require to fix a specific goal, for e-voting they propose a family
{γk}k≥0 of goals, which has been applied to analyze various e-voting protocols
and mix nets [KTV10b, KTV14, KTV12b, KTV11].

Roughly speaking, for k ≥ 0, the goal γk contains exactly those runs of
the voting protocol in which all but up to k votes of the honest voters are
counted correctly and every dishonest voter votes at most once.

Before recalling the formal definition of γk from [KTV10b], we first illus-
trate γk by a simple example. For this purpose, consider an election with five
eligible voters, two candidates, with the result of the election simply being
the total number of votes per candidate. Let the result function fres (see
Section 2.1) be defined accordingly. Now, let r be a run with three honest
and two dishonest voters such that A, A, B are the actual choices of the
honest voters in r and the published election result in r is the following: one
vote for A and four votes for B. Then, the goal γ1 is satisfied because the
actual choice of one of the honest voters choosing A can be changed to B and
at the same time the choice of each dishonest voter can be B. Hence, the
result is equal to fres(A,B,B,B,B), which is the published result. However,
the goal γ0 is not satisfied in r because in this case, all honest voters’ choices
(A,A,B) have to be counted correctly, which, in particular, means that the
final result has to contain at least two votes for A and at least one vote for
B. In particular, a final result with only two votes for A but none for B
would also not satisfy γ0, but it would satisfy γ1. (Recall from Section 2.1
that abstention is a possible choice.)

Definition 4 (Goal γk). Let r be a run of an e-voting protocol. Let nhonest
voters

be the number of honest voters in r and ndishonest
voters = nvoters − nhonest

voters be the

103

number of dishonest voters in r. Let ch1, . . . , chnhonest
voters

be the actual choices
of the honest voters in this run, as defined above. Then γk is satisfied in r
if there exist valid choices ch′1, . . . , ch

′
nvoters

such that the following conditions
hold true:

1. The multiset {ch′1, . . . , ch′nvoters
} contains at least nhonest

voters − k elements of
the multiset {ch1, . . . , chnhonest

voters
}.

2. If a result is published in r, it is equal to fres({ch′1, . . . , ch′nvoters
}).

If no election result is published in r, then γk is not satisfied in r.

With this goal, Definition 1 requires that if more than k votes of honest
voters were dropped/manipulated or the number of votes cast by dishonest
voters (which are subsumed by the adversary) is higher than the number
dishonest voters (ballot stuffing), then the judge should not accept the run.
More precisely, the probability that the judge nevertheless accepts the run
should be bounded by δ.

We note that the definition of γk does not require that choices made by
dishonest voters in r need to be extracted from r in some way and that
these extracted choices need to be reflected in {ch′1, . . . , ch′nvoters

}: the multi-
set {ch′1, . . . , ch′nvoters

} of choices is simply quantified existentially. It has to
contain nhonest

voters − k honest votes but no specific requirements are made for
votes of dishonest voters in this multiset. They can be chosen fairly indepen-
dently of the specific run r (except for reflecting the published result and the
requirement that there is at most one vote for every dishonest voter). This is
motivated by the fact that, in general, one cannot provide any guarantees for
dishonest voters, since, for example, their ballots might be altered or ignored
by dishonest authorities without the dishonest voters complaining (see also
the discussion in [KTV10b]).

5.2.3 Discussion

The goal γk makes only very minimal assumptions about the structure of a
voting system. Namely, it requires only that, given a run r, it is possible
to determine the actual choice (intention) of an honest voter and the actual
election result. Therefore, the goal γk can be used in the analysis of a wide
range of e-voting protocols.

One drawback of the goal γk is that it assumes static corruption. Another
disadvantage of γk (for k > 0) is the fact that it does not distinguish between
honest votes that are dropped and those that are turned into different valid
votes, although the impact on the final result by the second kind of manip-
ulation is stronger than the one by the first kind. To illustrate this issue,

104

consider two voting protocols P1 and P2 (with the result function fres being
the counting function). In P1, the adversary might not be able to turn votes
by honest voters into different valid votes, e.g., turn a vote for candidate A
into a vote for B. This can be achieved if voters sign their ballots. In this
case, the adversary can only drop ballots of honest voters. In P2, voters might
not sign their ballots, and hence, the adversary can potentially manipulate
honest votes. Now, P1 obviously offers stronger verifiability because in P1

votes of honest voters can only be dropped, but not changed: while in P2 the
adversary could potentially turn five honest votes, say for candidate A, into
five votes for B, in P1 one could at most drop the five honest votes, which is
less harm. Still, both protocols might achieve the same level of verifiability
in terms of the parameters γk and δ. If γk distinguished between dropping of
votes and manipulation, one could distinguish the security levels of P1 and
P2.

In Section 2.3.2, we have introduced a refinement of γk which solves this
problem.

5.3 Verifiability by Benaloh

In this section, we study the verifiability definition by Benaloh [Ben87]. This
definition constitutes the first formal verifiability definition proposed in the
literature, and hence, the starting point for the formal treatment of verifiabil-
ity. This definition is close in its essence to the one discussed in Section 5.2.

5.3.1 Model

Following [Ben87], an (t, ntrustees, nvoters)-election system E is a synchronous
system of communicating processes (probabilistic Turing machines), consist-
ing of ntrustees trustees, nvoters voters and further participants. Each process
of an election system controls one bulletin board. Each bulletin board can be
read by every other process, but only be written by the owner.

The intended (honest) behavior of the system participants is specified
by an election schema. An (t, ntrustees, nvoters)-election schema S consists of a
collection of programs to be used by the participants of an (t, ntrustees, nvoters)-
election system and an efficiently computable function Verify, which, given
the security parameter ` and the messages posted to the public bulletin
boards, returns either accept or reject. The election schema S describes a
program πT for each trustee process and two possible programs for each
voter: πyes to be used to cast a ”yes” vote and program πno to be used to
cast a ”no” vote. At the end of the election, each trustee Tk releases a value

105

τk.
Any process which follows (one of) its program(s) prescribed by S is said

to be proper. We say that a voter casts a valid “yes” vote, if the messages
it posts are consistent with the program πyes, and similarly for a “no” vote.
Note that a proper voter, by definition, always casts a valid vote; an improper
voter may or may not cast a valid vote, and if it does not cast a valid vote,
that fact may or may not be detectable by others.

The result res of an election is the pair (tyes, tno), where tyes and tno
are the numbers of voters who cast valid ”yes” and ”no” votes, respec-
tively. Note that this pair expresses the expected result corresponding to
the cast valid votes. The result of the election is said to be correct if
ρ(τ1, . . . , τm) = (tyes, tno), where ρ is a pre-determined function. The expres-
sion ρ(τ1, . . . , τm) describes the actual result, that is the result of the election
as jointly computed by the trustees (and combined using the function ρ).

5.3.2 Verifiability

Now, in [Ben87], verifiability is defined as follows.

Definition 5 (Verifiability). Let δ be a function of `. The (t, ntrustees, nvoters)-
election schema S is said to be verifiable with confidence 1 − δ if, for any
election system E, Verify satisfies the following properties for random runs of
E using security parameter `:

1. If at least t trustees are proper in E, then, with probability at least
1− δ(`), Verify returns accept and the election result is correct.

2. The joint probability that Verify returns accept and the election result
is not correct is at most δ(`).

The election schema S is said to be verifiable if δ is negligible.

Condition (1) of Definition 5 expresses a fairness condition (see Sec-
tion 2.3), where to guarantee the successful (and correct) run of a protocol,
it is enough to only assume that t trustees are honest.

Condition (2) of Definition 5 is the core of Definition 5. Roughly speaking,
it corresponds to Definition 1 with the goal γ0 defined by Küsters et al. (see
Section 5.2.2). As discussed below, there are, however, subtle differences,
resulting in a too strong definition.

106

5.3.3 Discussion

As mentioned before, Benaloh’s definition constitutes the first formal verifi-
ability definition, mainly envisaging an entirely computer-operated process
based on trusted machines and where, for example, voters were not asked to
perform any kind of verification. Given this setting, the definition has some
limitations from a more modern point of view.

Similarly to the definition in Section 5.2, this definition is fairly simple
and general, except that only yes/no-votes are allowed, trustees are explicitly
required in this definition, and every participant has her own bulletin board.
These restrictions, however, are not necessary in order to define verifiability,
as illustrated in Section 5.2. This definition also focuses on static corruption.
The main problem with this definition is that it is too strong in settings
typically considered nowadays, and hence, it would exclude most e-voting
protocols, even those that intuitively should be considered verifiable.

As already mentioned, Condition (2) of Definition 5 is related to the goal
γ0. The goal γ0 is, however, typically too strong because, for example, not
all honest voters perform the verification process, e.g., check whether their
ballots actually appear on the bulletin board. Hence, there is a non-negligible
chance that the adversary is not caught when dropping or manipulating
ballots. This is why Küsters et al. (Section 5.2) considered relaxed goals γk
for k ≥ 0.

Moreover, the goal considered here is even stronger (see Section 5.3.4).
Condition (2) in Definition 5 is concerned not only with honest voters, but
also with dishonest ones who post messages consistent with honest programs.
Now, the problem is that a dishonest voter could simply cast a vote just like
an honest one. The dishonest voter may, however, never complain even if
dishonest trustees (who might even team up with the dishonest voter) drop or
manipulate the ballot of the dishonest voter. Hence, it cannot be guaranteed
that votes of such dishonest voters are counted, unlike what Condition (2)
in Definition 5 requires. So, Definition 5 would deem almost all e-voting
protocols in settings typically considered nowadays insecure, even completely
reasonable ones.

Also, Condition (1) of Definition 5 may be too strong in many cases. It
says that the threshold of t trustees is enough to guarantee that a protocol
run is correct, i.e., in terms of the KTV framework, the judge would accept
the run. It might not always be possible to resolve disputes, for example,
when voters complain (possibly for no reason). For the sake of generality
of the definition, it would therefore be better to allow for a more flexible
fairness condition, as the one sketched in Section 5.2.

107

5.3.4 Casting in the KTV Framework

We now cast Definition 5 in the KTV Framework. To this end, we have
to define the class of protocols considered in [Ben87] in terms of the KTV
Framework and the goal γ.

Protocol PB. The set of agents Σ consists of the voters, the trustees, the
judge J, one bulletin board for each of these participants, and the remaining
participants. Since static corruption is considered, the agents accept a corrupt
message only at the beginning of an election run. The bulletin boards and
the judge do not accept corrupt message at all. As usual, we consider an
additional honest party, the scheduler. The honest programs are defined as
follows:

• The scheduler behaves in the expected way: it triggers all the parties
in every protocol step. The judge is triggered in the final phase, after
the trustees are supposed to output their (partial) tallying.

• The honest behavior of the bulletin boards is as described in Section 2.1,
with the only difference that a bulletin board owned by some party
accepts messages posted only by this party; it serves its content to all
parties, though.

• When a voter V runs her honest program πV, she first expects ”yes” or
”no” as input (if the input is empty, she stops). If the input is ”yes”,
she runs πyes, and otherwise πno. She sends the result to her bulletin
board B(V); πV might later be triggered again to perform verification
steps.

• When the judge J runs πJ and is triggered in the final phase, it reads
the content of all the bulletin boards and computes the result of the
function Verify on this content.

• The honest program πT of T depends on the concrete election system
that is used.

The goal. We define the goal γ∗0 to be γ0 (see Definition 4), with the dif-
ference that, instead of considering the multiset {ch1, . . . , chnvoters} of choices
of honest voters only, we now consider the multiset of choices of all voters
who cast a valid vote. This, as explained, includes not only honest voters,
but might also include some dishonest voters.

Verifiability. Now, it should be clear that the notion of verifiability de-
fined by Benaloh can be characterized in terms of Definition 1 as (γ∗0 , δ)-

108

verifiability.1 As discussed before, the goal γ∗0 is too strong for several rea-
sons.

5.4 E2E Verifiability by Kiayias et al.

In this section, we study the end-to-end verifiability definition by Kiayias et
al. [KZZ15b, KZZ15a].

5.4.1 Model

According to Kiayias et al., an e-voting scheme Π is a tuple (Setup, Cast, Tally,
Result, Verify) of probabilistic polynomial-time (ppt) algorithms where Cast
and Tally are interactive. The entities are the election authority Auth, the
bulletin board B, the trustees T1, . . . ,Tntrustees and the voters. The algorithm
Cast is run interactively between B and a voter Vi where the voter operates
a voter supporting device VSD on the following inputs: public parameters
prmpub, her choice chi, and her credentials credi. Upon successful termination,
Vi obtains a receipt αi. The algorithm Tally is run between Auth, the trustees
and B. This computation updates the public transcript τ . The algorithm
Verify(τ, αi) denotes the individual verification of the public transcript τ by
voter Vi, while Verify(τ, sti) denotes the verification of τ by trustee Ti on her
private state sti; the output of Verify is a bit. The algorithm Setup is run for
setting up an election, and the algorithm Result, given τ , outputs the result
of the election, if any.

5.4.2 E2E Verifiability

The E2E-verifiability game by Kiayias et al. [KZZ15b, KZZ15a] is given in
Figure 5.1. The adversary A can corrupt voters and trustees, and he controls
Auth and the VSDs of voters. The bulletin board is assumed to be honest,
but the adversary can determine the content τ of it. The set Vcast contains
all voters who successfully terminated their protocol, and hence, obtained a
receipt. However, they might not have verified their receipts. The adversary
wins the game if (i) |Vcast| ≥ θ, i.e., not to few voters successfully terminated,
and (ii) if all of these voters verified their receipt, would verify successfully,
and (iii) the published result of the election Result(τ) deviates by at least k
from the actual result fres(ch1, . . . , chnvoters) obtained according to the actual
votes of voters. More specifically, for the last condition, i.e., Condition (iii),
Kiayias et al. postulates the existence of a vote extractor algorithm Extr (not

1Recall that here we do not consider the fairness conditions.

109

necessarily running in polynomial time) which is supposed to determine the
votes of all voters not in Vcast, where Extr is given the transcript and the
receipt of voters in Vcast as input. Note that the adversary wins the game if
Extr fails to return these votes (Condition (b)).

Definition 6 (E2E-verifiability). Let nvoters, nchoices, k, ntrustees, θ ∈ N with
k > 0 and 0 < θ ≤ nvoters. Let 0 < δ < 1. The election protocol Π w.r.t.
election function fres achieves E2E verifiability with error δ, for a number of
at least θ honest successful voters and tally deviation k if there exists a vote-
extractor Extr such that for any adversary A controlling less than nvoters − θ
voters and ntrustees trustees, the Auth and all VSD’s holds:

Pr
[
GA,Extr,k,θ(1`, nchoices, nvoters, ntrustees) = 1

]
≤ δ.

We note that [KZZ15b] considers a fairness condition (named perfect cor-
rectness) similarly to the one in Section 2.3.

5.4.3 Discussion

We first note that the definition is too specific in some situations due to
the use of the extractor in the definition. Indeed, it does not seem to apply
to voting protocols where ballots published on the bulletin board hide the
choices of voters information-theoretically, such as [CPP13]. In this case,
the adversary could, for example, corrupt some voters but just follow the
protocol honestly. For these voters and those in Vcast the extractor could not
determine their votes, and hence, it would be very likely that the adversary
wins the game in Figure 5.1: if the extractor outputs votes, then it would be
very likely that Condition (a) is satisfied, and otherwise Condition (b) would
be satisfied.

This problem can be fixed by providing the extractor with the votes of
the voters in Vcast, not only with their receipts. In this case, the extractor
could simply compute Result(τ) and choose (chi)Vi /∈Vcast such that the dis-
tance d1(Result(τ), fres(ch1, . . . , chnvoters)) is minimal. This would be the best
extractor, i.e., the one that makes it the hardest for the adversary to win the
game. Note that this extractor does not have to actually extract votes from
τ , or even look closely at τ , except for computing Result(τ).

Conditions (a) and (b) could therefore be replaced by the following one:

(a*) For any combination of choices (chi)Vi /∈Vcast :

d1(Result(τ), fres(ch1, . . . , chnvoters)) ≥ k.

110

E2E Verifiability Game GA,Extr,k,θ(1`, nchoices, nvoters, ntrustees)

1. A chooses a list of choices C = {ch1, . . . , chnchoices
}, a set of voters

{V1, . . . ,Vnvoters}, and a set of trustees {T1, . . . ,Tntrustees}. It provides
the challenger Ch with these sets along with information prmpub and
voter credentials {credi}1≤i≤ nvoters . Throughout the game, Ch plays the
role of B.

2. A and Ch engage in an interaction where A schedules the Cast protocols
of all voters. For each voter Vi, A can either completely control the voter
or allow Ch operate on Vi’s behalf, in which case A provides chi to Ch.
Then, Ch engages in the Cast protocol with the adversary A, so that
A plays the roles of Auth and VSD. Provided the protocol terminates
successfully, Ch obtains a receipt αi on behalf of Vi.

3. Finally, A posts the election transcript τ to B.

The game returns a bit which is 1 if the following conditions hold true:

1. |Vcast| ≥ θ, (i.e., at least θ honest voters terminated)

2. ∀Vi ∈ Vcast : VerifyV(τ, αi) = 1 (i.e. the honest voters that terminated
verified successfully)

and either one of the following two conditions:

(a) If ⊥ 6= (chi)Vi /∈Vcast ← Extr(τ, {αi}Vi∈Vcast), then
d1(Result(τ), fres(ch1, . . . , chnvoters)) ≥ k (where d1 is a met-
ric).

(b) ⊥ ← Extr(τ, {αi}Vi∈Vcast)

Figure 5.1: E2E-verifiability by Kiayias et al.

This is then similar to Definition 4 where votes of dishonest voters are quan-
tified existentially. (Note that (a)* talks about when verifiability is broken,
while Definition 4 talks about the goal, i.e., what verifiability should achieve,
hence the switch from existential quantification in Definition 4 to universal
quantification in (a)*). As explained in Section 5.2, the existential quantifi-
cation is very reasonable because, for several reasons, it is often not possible
to extract votes of dishonest voters.

Our second observation is that the definition (even the version with the
fix above) is too weak in the following sense. To see this, consider runs

111

where honest voters cast their votes successfully, and hence, obtain a receipt,
but do not verify their receipt, and where the verification would even fail.
Because of the second condition, the adversary would right away loose the
game in these runs. However, these runs are realistic threats (since often
voters do not verify), and hence, guarantees should be given even for such
runs. The game in Figure 5.1 simply discards such runs. Therefore, instead
of the second condition one should simply require that the judge (looking at
τ and waiting for complaints from voters, if any) accepts the run. Note that
if the judge does not accept the run, then the election is invalid.

5.4.4 Casting in the KTV Framework

Protocol PKZZ. The set of agents Σ consists of the voters, the bulletin
board B, the voting authority Auth, the judge J, the trustees T1, . . . ,Tntrustees

and the remaining participants.
When a voter V runs her honest program πV in the casting phase, she

expects a choice ch, a credential and the public parameters of the election
(if her input is empty, she stops). Then, she runs Cast in interaction with B,
and expects a receipt α (if she does not receive a receipt, she stops). When
the voter is triggered by the judge in the verification phase, the voter reads
the election transcript τ from the bulletin board B (if she does not receive τ ,
she outputs ”reject”) and runs Verify(τ, α). If Verify(τ, α) evaluates to ”false”
or ”true”, respectively, she sends ”reject” or ”accept” to the judge J. The
definition of Kiayias et al. is not explicit about whether voters always verify
when triggered or not. Here one could also model that they decide whether
they verify according to some probability distribution.

When a trustee T runs its honest program πT in the setup phase, it
interacts with the remaining trustees, Auth and B. It expects as output its
secret state st (otherwise, it stops). In the tallying phase, on input st and
the contents of B (if any input is empty, it stops), it runs Tally in interaction
with B and Auth, and outputs a partial tally τ that is sent to Auth.

When the election authority Auth runs its honest program πAuth, it ex-
pects a security parameter 1` in the setup phase (if the input is empty, it
stops). Then, it runs Setup in interaction with B and the trustees, and
outputs the election parameters, which are published in B, and the voters’
credentials (cred1, . . . , crednvoters), which are sent to the corresponding voters
(V1, . . . ,Vnvoters). In the tallying phase, Auth runs Tally in interaction with B
and the trustees, and publishes the partial tally data τ1, . . . , τntrustees produced
by each trustee at the end of the interaction.

When the judge J runs its honest program πJ and is triggered in the

112

verification phase, it reads the election transcript τ . It performs whatever
check prescribed by the protocol. If one of these checks fails, J outputs
“reject”. Otherwise, J iteratively triggers all voters and asks about their
verification results (if any). If one of the voters rejects, J outputs “reject”,
and otherwise, “accept”.

E2E verifiability. We define the goal γθ,k,Extr, which is parameterized by
θ, k, and Extr as in Figure 5.1, to be the set of runs of PKZZ (with some
adversary A) such that at least one of the Conditions in Figure 5.1 is not
satisfied. With this, Definition 6, corresponds to the notion of (γθ,k,Extr, δ)-
verifiability according to Definition 1 when the same extractors are used and
one quantifies over the same set of adversaries.

As already discussed above, this definition on the one hand is too specific
(due to the use of the extractor) and on the other hand too weak (due to the
second condition). Therefore, as mentioned, the definition would be improved
if Conditions (a) and (b) were replaced by (a)* and the second condition was
replaced by the condition that the judge accepts the run. If one set θ = 0 in
addition, then Definition 6 would closely resemble γk from Definition 4.

5.5 Computational Election Verifiability by

Cortier et al.

In this section, we study the verifiability definition by Cortier et al. [CGGI14],
which can be seen as an extension of a previous verifiability definition by
Catalano et al. [JCJ10], whereby the bulletin board may act maliciously,
and thus it could potentially perform ballot stuffing (i.e., stuff itself with self-
made ballots on behalf of voters who did not vote) or erase ballots previously
cast by voters.

5.5.1 Model

Cortier et al. [CGGI14] model an e-voting scheme Π as a tuple (Setup,
Credential, Vote,VerifyV,Valid, Board, Tally, Verify) of ppt algorithms where
VerifyV and Verify are non-interactive. The entities are the registrar Reg,
the bulletin board B, the trustee T and the voters. The algorithm Setup(`)
is run by the trustee T and outputs the public parameters of the election
prmpub and the secret tallying key sk. The procedure Credential is run by
Reg with the identity idi of voter Vi and outputs a public/secret credential
pair (upki, uski). The algorithms discussed next implicitly take prmpub as
input. The algorithm Vote is run interactively between B and a voter Vi who

113

receives as inputs prmpub, her choice chi and her credentials (upki, uski). Upon
successful termination, a ballot bi is appended to the public transcript τ of the
election. The procedure Valid(b) outputs 1 or 0, depending on whether b is
well-formed. The algorithm that B must run to update τ is denoted by Board.
The algorithm Tally is run at the end of the election by T, given the content
of B and the secret key sk as input, and outputs tallying proofs π and the
final election result, denoted by res. The algorithm VerifyV(τ, upki, uski, bi)
is run by voter Vi for checking whether or not ballot bi appears in τ . The
algorithm Verify(τ, res, π) denotes the verification of the election result, while
VerifyV(τ, upki, bi) denotes the verification that ballot bi from voter Vi was
included in the final transcript of the election as published by B.

5.5.2 Verifiability Against Malicious Bulletin Board

In the e-voting system Helios [Adi08], a dishonest bulletin board B may add
ballots, since it is the sole entity checking the eligibility of voters. If B is
corrupted, then it might stuff itself with ballots on behalf of voters that in
fact did not vote. This problem, as already mentioned in Section 5.2.2, is
called ballot stuffing. Cortier et al. [CGGI14] give a definition of verifiability
in the computational model to account for a malicious bulletin board. To
defend voters against a dishonest B, a registration authority Reg is required.
Depending on whether both B and Reg are required to be honest, Cortier
et al. [CGGI14] define weak verifiability (B and Reg are honest) or strong
verifiability (B or Reg are honest).

In Figure 5.2, we give a snapshot of the cryptographic game used in
[CGGI14] to define verifiability in case B is dishonest. The adversary has
oracles to register voters, corrupt voters, and let honest voters vote. The
condition for winning the game is explained below. Note that Cortier et
al. assume that the result function admits partial counting, namely fres(S1 ∪
S2) = fres(S1) ?R fres(S2) for any two lists S1, S2 containing sequences of
elements ch ∈ C and where ?R : R× R→ R is a commutative operation. For
example, the result function that counts the number of votes per candidate
admits partial counting, while the result function that only reveals the winner
or overall ranking does not admit partial counting.

Definition 7 (Verifiability against malicious bulletin board). An election
scheme achieves verifiability against the bulletin board if the success rate
Succ(ExpverbA,Π) = Pr[ExpverbA,Π(`) = 1] of any ppt adversary A is negligible as a

function of `, where ExpverbA,Π is defined as in Figure 5.2.

Roughly speaking, this definition declares a protocol verifiable if, in the
presence of a malicious bulletin board (which can erase previous cast ballots

114

Experiment ExpverbA,Π

Adversary A has access to the following oracles:

• Oreg(id) which creates voters’ credentials via (upkid, uskid) ←
Credential(id), stores them as U ← U ∪ {(id, upkid, uskid)}, and returns
upkid to the attacker.

• Ocorrupt(id) which checks if an entry (id, ∗, ∗) appears in U ; if not,
it stops. Else, it gives (upkid, uskid) to A, updates a list of corrupted
voters CU ← CU ∪{(id, upkid)} and the list of honest cast ballots HVote
by removing any occurrence (id, ∗, ∗).

• Ovote(id, ch) which aborts if (id, ∗, ∗) /∈ U , or (id, ∗) ∈ CU . Else, it
returns b ← Vote(id, upkid, uskid, ch) and replaces any previous entry
(id, ∗, ∗) in HVote with (id, ch, b). (The latter list is used to record the
voter’s intention.)

Let Checked = {(idE1 , chE1 , bE1), . . . , (idEnE
, chEnE

, bEnE
)} ⊆ HVote contain those

id’s who checked that their ballot appears in τ at the end of the election.
The experiment outputs a bit as follows:

1. (τ, res, π)← AOreg,Ocorrupt,Ovote

2. If Verify(τ, res, π) = reject, return 0.

3. If res =⊥, return 0.

4. If there exist (idA1 , ch
A
1 , ∗), . . . , (idAnA

, chAnA
, ∗) ∈ HVote \ Checked and

there exist chB1 , . . . , ch
B
nB
∈ C such that 0 ≤ nB ≤ |CU| and

res = ρ
(
{chEi }

nE
i=1

)
?R ρ

(
{chAi }

nA
i=1

)
?R ρ

(
{chBi }

nB
i=1

)
,

return 0.

5. Return 1.

Figure 5.2: Verifiability against bulletin board by Cortier et al. [CGGI14]

and/or cast ballots on behalf of absentee voters), voters who check that
their ballot has not been removed are guaranteed that their choice has been
counted in the final result. Also some of the votes of honest voters who did
not check might also be contained in the final result. However, their votes

115

Experiment ExpvergA,Π

Adversary A has access to the oracles Ovote,Ocorrupt as in Figure 5.2, and
additionally to

• Ocast(id, b) which runs Board(τ, b). (Ocast allows A to cast ballots to
B on behalf of corrupted voters.)

Let HVote and Checked be the lists defined in Figure 5.2. The experiment
outputs a bit as follows:

1. (res, π)← AOcast,Ocorrupt,Ovote

2. If Verify(τ, res, π) = reject, return 0.

3. If res =⊥, return 0.

4. If there exist (idA1 , ch
A
1 , ∗), . . . , (idAnA

, chAnA
, ∗) ∈ HVote \ Checked and

there exist chB1 , . . . , ch
B
nB
∈ C such that 0 ≤ nB ≤ |CU| and

res = ρ
(
{chEi }

nE
i=1

)
?R ρ

(
{chAi }

nA
i=1

)
?R ρ

(
{chBi }

nB
i=1

)
,

return 0.

5. Return 1.

Figure 5.3: Verifiability against registrar by Cortier et al. [CGGI14]

may as well have been dropped (but not altered to other votes). Voters under
adversarial control can only vote once, with choices belonging to the choice
space. The bulletin board cannot stuff itself with additional ballots without
getting caught.

5.5.3 Verifiability Against Malicious Registrar

In Helios, the bulletin board B accepts only ballots cast by eligible voters.
The bulletin board B can tell apart eligible from ineligible voters generally by
using some kind of authentication mechanism. In this situation, one might
hope to enjoy verifiability against a dishonest registrar Reg, which is defined
in Figure 5.3.

Definition 8 (Verifiability against malicious registrar). An election scheme
achieves verifiability against the registrar if the success rate Succ(ExpvergA,Π) =

116

Pr[ExpvergA,Π(`) = 1] of any ppt adversary A is negligible as a function of `,
where ExpvergA,Π is defined as in Figure 5.3.

The intuition behind and the guarantees provided by Definition 8 are
similar to those of Definition 7 except that instead of a malicious bulletin
board a malicious registrar is considered, which thus can handle credentials
for voters in a malicious way, i.e., provide invalid credentials or make several
users share the same credentials.

5.5.4 Strong Verifiability

A protocol is said to have strong verifiability if it enjoys verifiability against
a dishonest registrar and verifiability against a dishonest bulletin board. In-
tuitively, this allows one to give verifiability guarantees under a weaker trust
assumption than that used in Section 5.4 since for strong verifiability we do
not need the bulletin board and the registrar to be simultaneously honest;
in Section 5.3, it was assumed that every party has its own bulletin board,
and in Sections 5.2, no specific trust assumptions were fixed or assumed.

We note that Cortier et al. also consider a fairness (correctness) condition
similar to the ones mentioned above: the result corresponds to the votes of
honest voters whenever all parties Reg,T,B and the voters are honest.

5.5.5 Weak Verifiability

For weak verifiability, the trust assumptions are stronger: both the registrar
Reg and the board B are assumed to be honest. This means, in particular,
that B does not remove ballots, nor stuffs itself; and that Reg faithfully
distributes credentials to the eligible voters. The verifiability game is given
in Figure 5.4.

Intuitively, weak verifiability guarantees that all votes that have been suc-
cessfully cast are counted and that dishonest voters can only vote once; addi-
tionally only choices belonging to the choice space can be cast and counted.

5.5.6 Tally Uniqueness

As part of their definitional framework, Cortier et al. [CGGI14] and Juels et
al. [JCJ10], require the notion of tally uniqueness. Roughly speaking, tally
uniqueness of a voting protocol ensures that the tally of an election is unique,
even if all the players in the system are malicious.

More formally, the goal of the adversary against tally uniqueness is to
output public election parameters prmpub, a public transcript τ , two results

117

Experiment ExpverwA,Π

Adversary A has access to the oracles Ovote,Ocorrupt,Oreg and Ocast de-
fined Figure 5.3 and 5.2. Let HVote the list containing the intended choices
of the honest voters. The experiment outputs a bit as follows:

1. (res, π)← AOcast,Ocorrupt,Ovote,Oreg

2. If Verify(τ, res, π) = reject, return 0.

3. If res =⊥, return 0.

4. If there exist (idA1 , ch
A
1 , ∗), . . . , (idAnA

, chAnA
, ∗) ∈ HVote \ Checked and

there exist chB1 , . . . , ch
B
nB
∈ C such that 0 ≤ nB ≤ |CU| and

res = ρ
(
{chAi }

nA
i=1

)
?R ρ

(
{chBi }

nB
i=1

)
,

return 0.

5. Return 1.

Figure 5.4: Weak verifiability by Cortier et al. [CGGI14]

res 6= res′, and corresponding proofs of valid tallying π and π′ such that
both pass verification, i.e. Verify(τ, res, π) = Verify(τ, res′, π′) = 1. A voting
protocol Π has tally uniqueness if every ppt adversary A has a negligible
advantage in this game.

Following [CGGI14], tally uniqueness ensures that, given a tally, there is
at most one plausible instantiation (one-to-one property).

5.5.7 Discussion

Strong verifiability explicitly captures the situation where key players in an
electronic election, such as the bulletin board or the registrar, might be
corrupted and willing to alter the legitimate operation of the election. This
is notably the case for Helios without identifiers (i.e., the transcript τ does not
contain voters’ identifiers), where a malicious B can stuff itself with ballots on
behalf of absentee voters. Additionally, strong verifiability provides stronger
guarantees, compared to previous definitions, to honest voters: ballots from
honest voters that do not verify successfully at the end of the election can at
worst be removed from the election’s announced result, but never changed.
In [CGGI14], sufficient properties for proving strong verifiability have been
established.

118

A downside of the above definitions is that the voter’s intent is not cap-
tured by the oracle Ovote(id, ch), as this oracle simply performs the honest
voting algorithm. In reality, voters typically use some VSD, which might be
corrupted. Additionally, since Cortier et al. require that the adversary wins
the game (i.e., successfully cheats) with at most negligible probability, ballot
audit checks, such as Benaloh’s audits2 [Ben06], are deemed non-verifiable as
these checks may fail with non-negligible probability. Another weak point,
although less important than the previous ones, is that this framework as-
sumes that the result function ρ admits partial tallying, which is commonly
the case, but it is, for example, not applicable to voting protocols which use
the majority function as the result function.

5.5.8 Casting in the KTV Framework

Protocol PCGGI. The set of agents Σ consists of the voters, the bulletin
board B, the registrar Reg, the teller T, judge J, the scheduler, and the
remaining participants. We assume that the judge and the scheduler cannot
be corrupted (they ignore the corrupt message). As in the definition of Cortier
et al., Reg and B can be corrupted statically, i.e., they accept the corrupt
message at the beginning of a run only. Voters can be corrupted dynamically.

When the voter V runs her honest program πV, she expects a choice ch,
a credential pair (upk, usk) as input (if the input is empty, she stops). After
that, she reads the election parameters prmpub and C from the bulletin board
B (if she cannot find any election paramaters on B, she stops). Then, she
runs Vote(prmpub, ch, upk, usk) and sends the result b to the bulletin board B.
Once the election is closed, she reads the content of the bulletin board and
checks whether her ballot has been properly handled by the bulletin board
by running VerifyV(τ, upk, usk, b). If not, the voter sends her complaint to
the judge. The program of the judge accepts a run, if it does not receive any
complaint from a voter and the procedure Verify(τ, res, π) returns 1.

When the registrar Reg runs the honest program πReg, it generates and
distributes secret credentials to voters and registers the corresponding public
credentials in the bulletin board.

When the teller T runs its honest program πT, it reads the public tran-
script τ and runs (res, π)← tally(τ, sk), with the election private key sk. The
transcript is updated to τ ′ = τ ||res||π.

Strong verifiability. We define the goal γSV to be the set of all runs of
PCGGI in which either (a) both Reg and B are corrupted, (b) the result is not

2In these audits the voter can decide to cast or to audit a ballot created by her VSD.
If she decides to audit the ballot, she can check whether it actually encodes her choice.

119

output, or (c) the result res of the election is defined and satisfies

res = ρ
(
{chEi }

nE
i=1

)
?R ρ

(
{chAi }

nA
i=1

)
?R ρ

(
{chBi }

nB
i=1

)
for some nE, nA, nB and some chEi , ch

A
i , ch

B
i such that

• chE1 , . . . , ch
E
nE

are the choices read by honest voters that successfully
checked their ballots at the end of the election (and report it to the
judge),

• w1, . . . , wmA
are the candidates read by honest voters that did not check

their ballots and {chAi }
nA
i=1 ⊆ {wj}

mA
j=1,

• chB1 , . . . , ch
B
nb
∈ C and nb is smaller then the number of voters running

a dishonest program.

Note that, according to the above definition, if both the registrar and the
bulletin board are corrupted, then the goal is trivially achieved, as we do not
expect to provide any guarantees in this case.

For the protocol PCGGI , strong verifiability by Cortier et al. can essentially
be characterized by the fact that it is (γSV , δ)-verifiable by the judge J in the
sense of Definition 1, for δ = 0.

Let us emphasize that this goal ensures that votes of honest voters who
do not verify at the end of the election are at most dropped, but not changed.
This is in contrast to the goals we have seen so far. In these goals, votes of
honest voters who do not verify might have been tampered with.

Weak verifiability. We define the goal γWV to be the set of all runs of
PCGGI in which either (a) either Reg or B is corrupted, (b) the result is not
output, or (c) the result res of the election is defined and satisfies

res = ρ
(
{chAi }

nA
i=1

)
?R ρ

(
{chBi }

nB
i=1

)
for some nA, nB and some chAi , ch

B
i such that

• chA1 , . . . , ch
A
nA

are the candidates read by honest voters that cast their
votes;

• chB1 , . . . , ch
B
nb
∈ C and nb is smaller then the number of voters running

a dishonest program.

For the protocol PCGGI , weak verifiability by Cortier et al. can essentially
be characterized by the fact that it is (γWV , δ)-verifiable in the sense of
Definition 1.

Note that Item (c) of the goal γWV is stronger than the corresponding
item of γSV (since all honest cast votes shall be counted). However, the latter
is called weak verifiability in [CGGI14] because the trust assumptions (Item
(a)) are stronger (both the bulletin board and the registrar shall be honest).

120

5.6 Computational Election Verifiability by

Smyth et al.

This section focuses on the definitions of individual, universal and election
verifiability by Smyth et al. [SFC15]. Smyth et al. consider two different
verifiability settings, one for election schemes with external and the other
one for election schemes with internal authentication (such as Helios and
Civitas, respectively). For the sake of brevity, we focus on election schemes
with external authentication because the issues discussed in Section 5.6.5
apply to both of them.

5.6.1 Model

According to Smyth et al., an election scheme Π is a tuple (Setup, Vote,
Tally, Verify) of probabilistic polynomial-time algorithms. The algorithms
Setup and Vote are defined as usual. The algorithm Tally is run by the tellers
and receives the content of the bulletin board B and the parameters prm
as input, and outputs the tally along with a non-interactive proof π for the
correctness of the tally. The algorithm Verify describes the verification of the
election result and receives the content of the bulletin board B, the public
parameters prmpub, the tally, denoted by tally, and a proof π, and outputs a
bit. The algorithm Verify is deterministic.

5.6.2 Individual Verifiability

According to Smyth et al., an election scheme achieves individual verifiability
if, for any two honest voters, the probability that their ballots are equal is
negligible, which formally is expressed as follows.

Definition 9 (Individual verifiability). An election scheme Π achieves indi-
vidual verifiability if the success rate Succ(ExpIV(Π,A)) of any ppt adversary
A in Experiment ExpIV(Π,A) (Fig. 5.5) is negligible as a function of `.

5.6.3 Universal Verifiability

According to Smyth et al., an election scheme achieves universal verifiability
if no ppt adversary A can simulate a tallying phase such that, on the one
hand, the verification algorithm Verify accepts the output (e.g., all zero-
knowledge proofs are successful), and, on the other hand, the given output
of the tallying phase does not agree with what Smyth et al. call the correct
tally.

121

Experiment ExpIV(Π,A)

1. (prmpub, ch, ch
′)←− A

2. b←− Vote(ch, prmpub)

3. b′ ←− Vote(ch′, prmpub)

4. If b = b′ 6= ⊥, return 1, else return 0.

Figure 5.5: Individual verifiability experiment by Smyth et al. [SFC15]

Experiment ExpUV(Π,A)

1. (B, prmpub, tally
′, π′)← A

2. tally←− correct tally(B, prmpub)

3. If tally 6= tally′ and Verify(B, prmpub, tally
′, π′), then return 1, else return

0.

Figure 5.6: Universal verifiability experiment by Smyth et al. [SFC15]

The function correct tally, defined as follows, extracts the actual votes
from the ballots on the bulletin board.

Definition 10 (Correct Tally). The function correct tally receives as input
a tuple (B, prmpub) and outputs a vector from {0, . . . , nballots}ncand such that
for every choice ch ∈ {1, . . . , ncand} and every number l ∈ {0, . . . , nballots},
we have that correct tally(B, prmpub)[ch] = l if and only if there are exactly l
different ballots b (6= ⊥) on the bulletin board B and for each of them there
exists a random bit string r such that b = Vote(ch, prmpub; r).

Now, universal verifiability is defined as follows according to Smyth et al.

Definition 11 (Universal verifiability). An election scheme Π achieves uni-
versal verifiability if the success rate Succ(ExpUV(Π,A)) of any ppt adversary
A in Experiment ExpUV(Π,A) (Fig. 5.6) is negligible as a function of `.

5.6.4 Election Verifiability

The notion of verifiability proposed by Smyth et al. now combines the notions
of individual and universal verifiability.

122

Definition 12 (Election Verifiability). An election scheme Π satisfies elec-
tion verifiability if for any ppt adversaries A, there exists a negligible function
µ such that for all security parameters `, we have that

Succ(ExpIV(Π,A)) + Succ(ExpUV(Π,A)) ≤ µ(`).

Smyth et al. also consider some soundness properties, including fairness and
correctness, similar to the ones mentioned in previous sections.

5.6.5 Discussion

This definition has two main shortcomings. First, as stated by the au-
thors [SFC15], their “definitions of verifiability have not addressed the issue
of voter intent, that is, whether the ballot constructed by the Vote algo-
rithm corresponds to the candidate choice that a voter intended to make.”
In general, it is not clear that the combination of the proposed definitions
of verifiability along with additional soundness properties implies any form
of end-to-end verifiability. More precisely, if all the verification procedures
succeed, it is unclear whether the final outcome of an election corresponds to
the voters’ choices at least with reasonable probability. We think, however,
that capturing such overall correctness and the voter’s intent is at the very
core of a meaningful notion of verifiability.

Second, the definition considers a restricted class of protocols (the authors
themselves provide a list of protocols excluded by their definition), some of
these restrictions, as pointed out before, also apply to some of the other
definitions discussed in this paper: (1) The model captures “single-pass”
protocols only: voters send a single ballot to the election server, without any
further interaction. (2) The authors assume that the whole ballot is pub-
lished. (3) The authors assume that the vote can be recovered directly from
the ballot, which excludes protocols using information-theoretically hiding
commitments. (4) There is no revote. (5) The bulletin board publishes the
list of ballots, as received. And hence, voting schemes such as ThreeBallot
[Smi07] cannot be modeled.

5.6.6 Casting in the KTV Framework

Protocol PSFC. The set of agents Σ consists of the voters, the bulletin
board B, the judge J, the scheduler, and the remaining participants. Since
static corruption is considered, the agents only accept the corrupt message at
the beginning of an election run. The bulletin board and the judge do not
accept to be corrupted.

123

When a voter V runs her honest program πV, she expects a choice ch as
input (if the input is empty, she stops). After that, she reads the public
election parameters prmpub from the bulletin board B (if she does not receive
any election paramaters on B, she stops). Then, she runs Vote(ch, prmpub)
and sends the resulting ballot b to the bulletin board B. Although this is
kept implicit in the discussed paper, we will assume here that V subsequently
checks that her ballot is published on B.

When the judge J runs its honest program πJ, it reads the content from
the bulletin board B, including the public paramaters prmpub, the result tally,
and the proof P (if the judge does not receive one of these inputs, it outputs
”reject”). Then, the judge runs Verify and outputs ”accept” or ”reject”,
respectively, if Verify(B, prmpub, tally, π) evaluates to ”true” or ”false”.

Individual verifiability. We define the goal γIV to be the set of all runs of
PSFC in which all honest voters’ ballots are pairwise different (if 6= ⊥), i.e.,
no clashes occur. For the protocol PSFC , individual verifiability according to
Smyth et al. can essentially be characterized by the fact that the protocol
PSFC is (γIV , 0)-verifiable by the judge J in the sense of Definition 1.

To see this, observe that if a protocol achieves individual verifiability
according to Definition 9, then we have that for all ppt adversaries πA the
probability

Pr[π(1`) 7→ ¬γIV , (J : accept)] ≤ Pr[π(1`) 7→ ¬γIV]

is negligible for π = πP ||πA, where the latter probability is negligible if the
protocol satisfies Definition 9.

For the implication in the opposite direction, let us assume that the prob-
ability Pr[π(1`) 7→ ¬γIV , (J : accept)] is negligible for all adversaries. Now,
for each adversary A from the game used in Definition 9, there is a corre-
sponding adversary πA which always produces a correct tally (note that A is
not concerned with tallying). For this adversary, we have

Pr[π(1`) 7→ ¬γIV , (J : accept)] = Pr[π(1`) 7→ ¬γIV]

which, by the above assumption, is negligible. This implies individual verifi-
ability (in the sense of Definition 9).

Universal verifiability. We define the goal γUV to be the set of all runs
of PSFC in which first prmpub and then a final result (tally, π) are published
and tally = correct tally(B, prmpub) (recall that B is the content of the bulletin
board that contains voters’ ballots).

For the protocol PSFC , universal verifiability according to Smyth et al. can
essentially be characterized by the fact that the protocol PSFC is (γUV , 0)-
verifiable in the sense of Definition 1.

124

To see this, first observe that we have Verify(B, prmpub, tally
′, π′) for each

adversary A in Experiment ExpUV(Π,A) (Fig. 5.6) is true if an honest judge
J outputs “accept” (in the system π with the corresponding adversary), and
false otherwise. Second, the adversary A in Experiment ExpUV(Π,A) pro-
duces a tuple (B, prmpub, tally

′, π′) for which tally′ 6= correct tally(B, prmpub)
holds true if and only if we have ¬γUV (in the corresponding run of π).

Thus, essentially, for a voting protocol P achieving universal verifiability
according to Definition 11 (which means that the success rate in Experiment
ExpUV(Π,A) (Fig. 5.6) is negligible for every ppt adversary A) is equivalent to
the statement that the goal γUV is 0-verifiable by the judge J according to Def-
inition 1 (which means that the probability Pr[π(1`) 7→ ¬γUV , (J : accept)] is
negligible in every instance πP ||πA).

Election verifiability. According to Smyth et al. the protocol PSFC
achieves election verifiability if it achieves individual and universal verifiabil-
ity. Therefore this notion can be expressed in the language of Definition 1
using the goal γIV ∧ γUV .

5.7 Symbolic Verifiability by Kremer et al.

In this section, we study the definition of verifiability proposed by Kremer
et al. [KRS10] who divide verifiability into three sub-properties.

• Individual verifiability: a voter should be able to check that her vote
belongs to the bulletin board.

• Universal verifiability: anyone should be able to check that the result
corresponds to the content of the bulletin board.

• Eligibility verifiability: only eligible voter may vote.

Since the proposed formal definition for eligibility verifiability is rather long
and technical, we focus here on individual and universal verifiability.

5.7.1 Model

In symbolic models, messages are represented by terms. Kremer et al. model
protocols as processes in the applied-pi calculus [AF01]. A voting specification
is a pair (V,A) where V is a process that represents the program of a voter
while A is an evaluation context that represents the (honest) authorities and
the infrastructure. All voters are (implicitly) assumed to be honest.

125

5.7.2 Individual and Universal Verifiability

We can express the definitions of Kremer et al. independently of the execution
model, which slightly extends their definitions.

The symbolic verifiability definition by Kremer et al. [KRS10] assumes
that each voter Vi performs an individual test φIV

i , and that observers per-
form a universal test φUV . The individual test φIV

i takes as input the voter’s
vote and all her local knowledge (e.g. randomness, credentials, and public
election data) as well as a partial view of the bulletin board (which should
correspond to her ballot). The universal test φUV takes as input the outcome
of the election, the public election data, the bulletin board, and possibly some
extra data generated during the protocol used for the purposes of verification.
These tests should satisfy the following conditions for any execution.

Definition 13 (Individual and Universal Verifiability). A voting specification
(V,A) satisfies individual and universal verifiability if for all n ∈ N,

∀i, j : φIV
i (b) ∧ φIV

j (b) ⇒ i = j (5.1)

φUV (B, r) ∧ φUV (B, r′) ⇒ r ≈ r′ (5.2)∧
1≤i≤n

φIV
i (bi) ∧ φUV (B, r) ⇒ ch ≈ r (5.3)

where ch = (ch1, . . . , chn) are the choices of the voters, b is an arbitrary
ballot, B is the (content of the) bulletin board, r and r′ are possible outcomes,
and ≈ denotes equality up to permutation.

Intuitively, Condition (5.1) ensures that two distinct voters may not agree
on the same ballot, i.e., no clash occurs. Condition (5.2) guarantees the
unicity of the outcome: if the observers successfully check the execution,
there is at most one outcome they may accept (up to permutation). Finally,
Condition (5.3) is the key property: if all tests succeed, the outcome should
correspond to the voters’ intent. Observe that, since all voters are assumed
to be honest, the implication ch ≈ r in Condition (5.3) can be described by
the goal γ0 (see below).

5.7.3 Discussion

Definition (13) is tailored to a specific result function: the election result has
to be the sequence of the votes. Moreover, the definition assumes that the
ballot of the voter can be retrieved from the bulletin board, which does not
apply to ThreeBallot for example. The main restriction is that all voters are
assumed to be honest.

126

Observe that by Condition (5.3) the goal γ0 is guaranteed only for protocol
runs in which all voters successfully verify their ballots (and the universal
test is positive). For the other runs, the outcome can be arbitrary. However,
the assumption that all honest voters verify their ballot is unrealistically
strong. Therefore, even though this definition uses the strong goal γ0, this
assumption makes the definition weak.

5.7.4 Casting in the KTV Framework

Protocol PKRS. The set of agents Σ consists of the voters, the bulletin
board B, the judge J, and the remaining participants. Only static corruption
is considered. The voters, the bulletin board and the judge do not accept to
be corrupted. The honest programs are defined as follows:

• When a voter Vi runs her honest program πVi
and is triggered in order

to cast a ballot, she runs the usual program. When Vi is triggered
in order to verify her vote, she performs the individual test φIV

i (b)
with her ballot b, and if this evaluates to ”true”, she outputs ”accept”,
otherwise ”reject”.

• When the judge J runs its honest program πJ, it reads the content from
the bulletin board B including the result r (if it does not receive any
content, it outputs ”reject”). Then the judge performs the universal
test φUV (B, r), and if this evaluates to ”false”, the judge outputs ”re-
ject”. Otherwise, the judge iteratively triggers each voter Vi in order
to verify her ballot. If every voter outputs ”accept”, the judge outputs
”accept”, and otherwise ”false”. (This models the requirement in the
definition of Kremer et al. that all voters have to verify successfully in
order for the run to be accepted. It also means that if not all voters
verify, no guarantees are given.)

End-to-end honest verifiability. Let the goal γIUV be the sub-goal of
γ0 in which all voters produce pairwise different ballots. Then, individual
and universal verifiability by Kremer et al. (Definition (13)) can essentially
be characterized by the fact that the protocol PKRS is (γIUV , 0)-verifiable by
the judge.

To see this, first observe that the judge J (as defined above) outputs ”ac-
cept” if and only if the condition

∧
1≤i≤n φ

IV
i (bi)∧φUV (B, r) (Condition (5.3))

evaluates to true. As we already pointed out, the implication ch ≈ r in Con-
dition (5.3) describes the goal γ0. Condition (5.1) stating that there are no
clashes between the ballots of honest voters is also satisfied in γIUV by defini-
tion. Thus, for a protocol which achieves individual and universal verifiability

127

according to Definition 13, the probability that the judge J in PKRS accepts
a protocol run in which γIUV is not fulfilled, is negligible (δ = 0), i.e., we
have Pr[π(`) 7→ ¬γIUV , (J : accept)] ≤ δ = 0 with overwhelming probability
as in Definition 1.

5.8 Symbolic Verifiability by Cortier et al.

In this section, we study the symbolic verifiability definition by Cortier et
al. [CEK+15]. Cortier et al. also define different notions of verifiability: in-
dividual, universal, and end-to-end verifiability. They prove that under the
assumption of an additional property, called ”no clash”, individual and uni-
versal verifiability imply end-to-end verifiability in their symbolic model.

5.8.1 Model

As in [KRS10], the definitions of Cortier et al. are cast in a symbolic model.
That is, messages are represented by terms and protocols are defined as
symbolic processes. Additionally, Cortier et al. assume that voters reach
several successive states denoted as follows:

• Vote(id, ch, cred): the voter with identity id owns some credential cred
and is willing to cast a choice ch.

• MyBallot(id, ch, b): the voter id has prepared a ballot b corresponding
to the choice ch.

• VHappy(id, ch, cred,B): the voter id with credential cred has cast a
choice ch and is happy with the content of the bulletin board B.

Cortier et al. [CEK+15] also assume the existence of a judge who checks
whether or not a result res corresponds to a bulletin board B and reaches a
state JHappy(B, res) whenever this is the case.

After the casting and before the tallying, some ballots may be removed
because they are invalid (e.g., due to flawed signatures or zero-knowledge
proofs) or simply because some voters have voted several times and only the
last vote counts. This yields a “sanitized” list of ballots Bsan.

5.8.2 Individual Verifiability

Intuitively, individual verifiability by Cortier et al. holds true if whenever
honest voters perform the checks prescribed by the protocol, then their ballots
belong to the bulletin board.

128

Definition 14 (Individual Verifiability). A protocol guarantees individual
verifiability if for every execution, and for every voter Vid, choice ch, cre-
dentials cred and bull board B, whenever the state VHappy(id, ch, cred,B) is
reached, it follows that

Vote(id, ch, cred) ∧ ∃b ∈ B : MyBallot(id, ch, b).

5.8.3 Universal Verifiability

The universal verifiability definition by Cortier et al. depends on certain
predicates whose purpose is to formally define what it means that a ballot
”contains” a vote and that the tallying proceeds correctly.

Wrap. To define that a vote is “contained” in a ballot, Cortier et al. in-
troduce a predicate Wrap(ch, b) that is left undefined, but has to satisfy the
following properties:

1. Any well-formed ballot b corresponding to some choice ch satisfies the
Wrap predicate:

MyBallot(id, ch, b)⇒ Wrap(ch, b)

2. A ballot b cannot wrap two distinct choices ch1 and ch2:

Wrap(ch1, b) ∧Wrap(ch2, b)⇒ ch1 = ch2

For a given protocol, the definition of Wrap typically follows from the protocol
specification.

Good sanitization. When the bulletin board B is sanitized, it is accept-
able to remove some ballots but of course true honest ballots should not be
removed. Therefore, Cortier et al. define the predicate GoodSan(B,Bsan) to
hold true (implicitly relatively to a run) if the honest ballots of B are not
removed from Bsan. This means that (i) Bsan ⊆ B, and (ii) for any b ∈ B
such that MyBallot(id, ch, b) holds true for some voter Vid and some choice
ch, it is guaranteed that b ∈ Bsan.

Good counting. Cortier et al. define a predicate GoodCount(Bsan, res) in
order to describe that the final result res corresponds to counting the votes
of Bsan. This is technically defined in [CEK+15] by introducing an auxiliary
bulletin board B′san which is a permutation of Bsan and from which the list
rlist of votes (such that res = ρ(rlist) where ρ is the counting function) can be
extracted line by line from B′san. More formally, GoodCount(Bsan, res) holds
true if there exist B′san, rlist such that (i) Bsan and rlist have the same size, and

129

(ii) Bsan and B′san are equal as multisets, and (iii) res = ρ(rlist), and (iv) for
all ballots b with B′san[j] = b for some index j, there exists a choice ch such
that Wrap(ch, b) as well as rlist[j] = ch hold true. Note that the definition of
GoodCount is parameterized by the counting function ρ of the protocol under
consideration.

Then, universal verifiability is defined as follows.

Definition 15 (Universal Verifiability). A protocol guarantees universal ver-
ifiability if for every execution, and every bulletin board B and result res,
whenever the state JHappy(B, res) is reached, it holds that

∃Bsan : GoodSan(B,Bsan) ∧ GoodCount(Bsan, res).

Intuitively, whenever the judge (some election authority) states that some
result res corresponds to a bulletin board B, then res corresponds to the
votes contained in a subset Bsan of B (some ballots may have been discarded
because they were ill-formed for example) and this subset Bsan contains at
least all ballots formed by honest voters that played the entire protocol (that
is, including the final checks).

5.8.4 E2E Verifiability

Intuitively, end-to-end verifiability according to Cortier et al. holds true if,
whenever no one complains (including the judge), then the election result
includes all the votes corresponding to honest voters that performed the
checks prescribed by the protocol.

Definition 16 (E2E Verifiability). A protocol guarantees end-to-end ver-
ifiability if for every execution, and every bulletin board B and result res,
whenever a state is reached such that for some subset of the honest voters
(indexed by some set I) with choices chid and credentials credid (id ∈ I), we
have

JHappy(B, res) ∧
∧
id∈I

VHappy(id, chid, credid,B),

then there exist rlist such that we have res = ρ(rlist) and {chid}id∈I ⊆ rlist (as
multisets).

5.8.5 No Clash

Finally, Cortier et al. define the notion of “no clash” as follows. Intuitively,
”no clash” describes the property that two distinct honest voters may not
build the same ballot.

130

Definition 17 (No Clash). A protocol guarantees no clash if for every exe-
cution, whenever a state is reached such that

MyBallot(i, chi, b) ∧MyBallot(j, chj, b),

then it must be the case that i = j and chi = chj.

5.8.6 Discussion

Cortier et al. [CEK+15] showed that individual verifiability, universal verifi-
ability, and the ”no clash” property together imply end-to-end verifiability
(all as defined above).

In order to be able to define their notions of individual and universal ver-
ifiability, Cortier et al. proposed a model in which it is possible to (i) extract
single ballots from the bulletin board (implicit in the predicate VHappy), and
to (ii) uniquely determine the content, i.e. the plain vote, of each single bal-
lot (Wrap predicate). Therefore, these definitions can only be applied to a
class of protocols which fulfill these requirements, and by this, for example,
ThreeBallot [Smi07] as well as protocols in which ballots are information
theoretically secure commitments (e.g. [CPP13]) can not be analyzed.

The notion of end-to-end verifiability (Definition 16) is rather weak since
it only requires that honest votes are counted (for voters that checked). It
does not control dishonest votes. In particular, this notion does not prevent
ballot stuffing. The authors of [CEK+15] introduced this notion because the
Helios protocol does not satisfy strong verifiability, as defined in [CGGI14]
for example (see also Section 5.5). Moreover, the verification technique based
on typing developed in [CEK+15] would probably require some adaption to
also cover strong verifiability as it would need to count the number of votes,
which is a difficult task for type-checkers.

5.8.7 Casting in the KTV Framework

Protocol PCEKMW . The set of agents Σ consists of the honest voters, the
bulletin board B, the judge J, and the remaining participants. Only static
corruption is considered. The bulletin board and the judge do not accept to
be corrupted. The honest programs are defined as follows:

• When a voter V runs her honest program πV, and is triggered to cast
her ballot, she expects an identity id and a choice ch (if not, she stops).
Then, she runs Vote(ch) to build her ballot b and to submit it to the bul-
letin board. Afterwards, she reaches a state MyBallot(id, ch, b). When
the voter is triggered to verify her vote, she reads the content of the

131

bulletin board B and reaches a state VHappy(id, ch,B) if her checks
evaluate to true.

• When the judge J runs its honest program πJ and is triggered to verify
the election run, it reads the content of the bulletin board B including
the final result res (if not possible, J outputs ”reject”). If the judge
successfully performs some checks (which depend on the concrete voting
protocol), then he outputs ”accept” and reaches a state JHappy(B, res).

Individual verifiability. We define the goal γIV to be the set of all
runs of PCEKMW in which whenever an honest voter Vid reaches the state
VHappy(id, ch,B) for some choice ch and ballot b, then there exists a ballot
b ∈ B such that this voter started with (id, ch) as her input and reached
MyBallot(id, ch, b) as intermediary state. Then, individual verifiability by
Cortier et al. (Definition 14) can essentially be characterized by the fact that
the protocol PCEKMW is (γIV , 0)-verifiable by the judge J.

Universal verifiability. We define the goal γUV to be the set of all runs
of PCEKMW in which whenever a result res is obtained and the final content
of the bulletin board is B then there exists Bsan such that GoodSan(B,Bsan)
and GoodCount(Bsan, res) hold true (as defined above). Then, universal veri-
fiability by Cortier et al. (Definition 15) can essentially be characterized by
the fact that the protocol PCEKMW is (γUV , 0)-verifiable by the judge J.

End-to-end verifiability. We define the goal γE2E to be the set of all
runs of PCEKMW in which the result res of the election satisfies res = ρ(rlist)
for some rlist that contains (as multiset) all the choices chid for which some
honest voter Vid reached a state VHappy(id, chid, credidB). Then, end-to-end
verifiability by Cortier et al. (Definition 16) can essentially be characterized
by the fact that the protocol PCEKMW is (γE2E, 0)-verifiable by the judge J.

5.9 Publicly Auditable Secure MPC by Baum

et al.

This section focusses on the definition of publicly auditable secure multi-party
computation by Baum et al. [BDO14]. Baum et al. also present a game-
based definition of auditable correctness which is, however, underspecified.3

Therefore, we only analyze the definition of auditable correctness as implied
by the ideal functionality.

3More precisely, in the game-based definition it is not stated by whom the input
x1, . . . , xm is provided.

132

5.9.1 Model

The protocols are client-server MPC protocols in the Universal Composabil-
ity Framework, where a set of parties provide input to the actual working
parties, who run the MPC protocol among themselves and make the output
public. The input parties are denoted by V1, . . . ,Vn and their inputs are
denoted by (ch1, . . . , chn). The computing parties are denoted by T1, . . . ,Tm
and participate in the computation phase. Given a set of inputs ch1, . . . , chn,
they compute an output C(ch1, . . . , chn) for some circuit C over a finite field.
After the protocol is executed, anyone acting as the judge J can retrieve
the transcript τ of the protocol from the bulletin board and (using only the
circuit C and the output res) determine whether the result is valid or not.

5.9.2 Auditable Correctness

Definition 18. A client-server MPC protocol achieves auditable correctness
if it realizes the ideal functionality FAuditMPC (Fig. 5.7) in the UC frame-
work.4

In what follows, we describe the basic concept of the ideal functionality
FAuditMPC (Fig. 5.7). In the initializing phase, the adversary can determine
which input parties and which computing parties are corrupted. In the input
phase, each honest input party V provides the ideal functionality with input
ch, and for each corrupted input party V, the adversary can provide the ideal
functionality with an arbitrary input ch′ which is then considered as the in-
put of V. The inputs for honest and dishonest input parties are stored as
ch′1, . . . , ch

′
n. In a voting protocol, ch′1, . . . , ch

′
n denote the choices of the hon-

est voters plus possible choices of the dishonest voters being provided by the
adversary (at most one vote for each dishonest voter). In the compute phase,
the ideal functionality first computes the correct result res′ = C(ch′1, . . . , ch

′
n).

If no computing party is corrupted, we take res = res′. Otherwise (if at least
one computing party is corrupted), the adversary is given res′ and can de-
termine the output res with the following restriction: if not all computing
parties are corrupted, the adversary can output ⊥ or res′, and otherwise, he
can choose an arbitrary result. In a voting protocol, res′ denotes the correct
output of the voting protocol run with input ch′1, . . . , ch

′
n, while res denotes

4In the ideal functionality FAuditMPC as defined in the original work [BDO14], the
variables ch′1, . . . , ch

′
m that are used in the second step of the computing phase are not

defined. It is reasonable to assume that these variables denote the inputs ch or ch′,
respectively, which are associated to the input parties V1, . . . ,Vn and stored in the first
step of the input phase. Therefore, we added the third line of the input phase above to
the ideal functionality from the original paper.

133

Functionality FAuditMPC

• Initialize: On input (Init, C) from all parties (where C is a circuit with
n inputs and one output): Wait until A sends the sets ABV ⊆ {1, . . . , n}
(corrupted input parties) and ABT ⊆ {1, . . . ,m} (corrupted computing
parties).

• Input: On input (Input,Vi, varidch, ch) from Vi and on input
(Input,Vi, varidch, ?) from all parties Tk, with varidch a fresh identi-
fier:

1. Store (varidch, ch).

2. If |ABT | = m, send (Input,Vi, varid, ch) to all Tk.

3. For all i ∈ {1, . . . , n} let ch′i denote the input stored for Vi.

• Compute: On input (Compute) from all parties Tk:

1. If an input gate of C has no value assigned, stop here.

2. Compute res′ = C(ch′1, . . . , ch
′
n).

3. If |ABT | = 0, set res = res′. If |ABT | > 0, output res′ to A and
wait for res from A. If |ABT | < n, the functionality accepts only
res ∈ {⊥, res′}. If |ABT | = n, any value res is accepted.

4. Output (Output, res) to all parties.

• Audit: On input (Audit, y) from J, and if Compute was executed, the
functionality does the following:

– If res′ = res = y, then output ”accept y”.

– If res = ⊥, then output ”no audit possible”.

– If res′ 6= res or y 6= res, then output ”reject y”.

Figure 5.7: Ideal functionality FAuditMPC by Baum et al. describing the
online phase.

the actual output of the run. In the audit phase, the ideal functionality
checks whether the output res coincides with the correct result res′. For a
voting protocol, the property that res′ and res coincide is simply the goal γ0

as introduced in Definition 4.

134

5.9.3 Discussion

The auditor of an MPC protocol realizing the ideal functionality FAuditMPC

in the UC framework always has to accept the result res of a run (with
overwhelming probability) if the result is correct, regardless of the rest of the
run (see the first case of the audit part in the ideal functionality). However,
this fairness requirement is unrealistically strong since then, as long as the
result of a protocol run is correct, the auditor has to accept the result even
if, for example, ZK proofs are flawed.

If an attacker does not control all computing parties, i.e., if that there
is at least one honest computing party, then an MPC protocol that realizes
the ideal functionality guarantees that either the result is correct, or else not
output is produced. This assumption is, however, unrealistically strong.

5.9.4 Casting in the KTV Framework

Protocol PBDO. The set of agents Σ consists of the voters, the bulletin
board B, the judge J, and the remaining participants. Since static corruption
is considered, the agents only accept to be corrupted at the beginning of an
election run. The bulletin board B and the judge J do not accept to be
corrupted.

When a voter Vi runs her honest program πVi
, she receives a choice chi

and then runs Vote(chi) (see Section 2.1).
The honest program of the judge J depends on the concrete voting pro-

tocol.

Public auditability. Let the goal γ0 be defined as in Definition 4 by
Küsters et al.5. Public auditability of a protocol PBDO (as implied by the
ideal functionality FAuditMPC) can essentially be characterized by the fact
that (i) the protocol PBDO is (γ0, 0)-verifiable by the judge J (Definition 1),
and (ii) the output of the protocol is either the correct one or ⊥ if at least
one computing party is honest. To see this, note that in its audit phase, the
ideal functionality FAuditMPC accepts the run if and only if the published
result res is equal to the correct result res′, i.e., γ0 is achieved.

Additionally, as already mentioned, public auditability entails the fairness
condition that requires a run to be accepted whenever the produced result is
correct (as mentioned, this condition is too strong in the context of e-voting).

5Since Definition 18 does not distinguish between valid and invalid choices ch (see
Discussion 5.9.3), we assume that the set of valid choices is the finite field over which the
circuit C is defined.

135

5.10 Universal Verifiability by Chevallier-Mames

et al.

In this section, we analyze the definition of universal verifiability proposed
by Chevallier-Mames et al. [CFP+10].

5.10.1 Model

For each voter Vi, let Bi denote the transcript of Vi, i.e., the interactions
between Vi and the voting authority. The bulletin board B is regarded as
the set of transcripts. Any interaction, including those with the authorities,
can be assumed public. Chevallier-Mames et al. assume that each voting
protocol guarantees the following requirements.

1. Detection of individual fraud: From a partial list of transcripts B
produced by V1, . . . ,Vn, the voting authority should be able to determine
whether a new transcript Bn+1 produced by Vn+1 is valid (well-formed and
does not correspond to a double vote). More formally, there exists a boolean
function f such that

∀n,∀V1, . . . ,Vn,Vn+1

∀B← V1, . . . ,Vn,Bn+1 ← Vn+1,

Bn+1 valid ∧ f(B,Bn+1) =

{
0, if Vn+1 ∈ {V1, . . . ,Vn}
1, if Vn+1 /∈ {V1, . . . ,Vn}

The language of the bulletin boards B which are iteratively valid is denoted
by L.

2. Computation of the result: From the transcripts, the voting authority
should be able to compute the result, that is a vector of the number of
selections for each candidate: there exists an efficient function f ′ that, from
the bulletin board B, outputs res,

∀B ∈ L, f ′(B) =
∑
i

chi = res.

3. Computation of the list of the voters: From the transcripts, the voting
authority should be able to determine the list Vcast of the voters who actu-
ally casted their ballots: there exists an efficient function f ′′ that, from the
bulletin board B, extracts the sublist Vcast of the voters,

∀B ∈ L, f ′′(B) = Vcast.

136

5.10.2 Universal Verifiability

The idea of universal verifiability by Chevallier-Mames et al. is that every-
body should be able to check the correctness/validity of the votes and of the
computation of the result and the voters: the bulletin-board B, the result res
and the list of the voters Vcast should rely in an NP language L′, defined by
the relation R: there exists a witness w which allows an efficient verification.
Furthermore, for any B, the valid res and Vcast should be unique.

Definition 19 (Universal Verifiability). Let R be the NP -relation for the
language L′ of the valid ballots and valid computation of the result. A voting
scheme achieves the universal verification property if only one value for the
result and the list of the voters can be accepted by the relation R, and the
witness w can be easily computed from the bulletin-board B using a function
g:

∀B ∈ L,∃!(res,Vcast),∃w : R(B, res,Vcast, w) = 1

∀B /∈ L,∀(res,Vcast, w) : R(B, res,Vcast, w) = 0

∀B ∈ L : R(B, f ′(B), f ′′(B), g(B)) = 1.

Note that g is a function private to the authorities, to compute a short
string (the witness) that allows everybody to check the overall validity,
granted the public relation R. The functions f, f ′, f ′′ and g may be keyed
according to the system parameters: g is clearly private to the voting au-
thority, while f and f ′′ may be public (which is the case in schemes based
on homomorphic encryption). The function f ′ is likely to be private.

5.10.3 Discussion

The second requirement for voting schemes according to Chevallier-Mames
et al. (computation of the result) excludes dishonest voters since for them
chi remains undefined as they might not even produce chi; and even if a
dishonest voter produces some chi as an honest voter does, she might not
submit it.

Because of the same requirement, the model abstracts away from the
problem that ballots might be dropped or manipulated in the casting phase:
it implicitly assumes that each valid ballot of a voter who has not voted yet
gets to the bulletin board. In addition, the model does not make a difference
between a voter and her client.

Whether or not a voting scheme achieves universal verifiability according
to Chevallier-Mames et al. (Definition 19), depends on how ”Bi valid” is
defined for the transcripts Bi used in the voting scheme.

137

The second condition in Definition 19 is too strong from a practical point
of view because a voting scheme in which invalid ballots are removed can not
achieve universal verifiability according to Definition 19. To see this, consider
the case that in a run of a voting protocol a voter provides an invalid zero-
knowledge proof for her ballot. Then, in order to guarantee correctness, this
ballot is (typically) not considered in the result. Since the transcript of the
voter who submitted the invalid ballot is not valid, we have B /∈ L. By the
second point of Definition 19, it follows that, even if all voting authorities are
honest, then each zero-knowledge proof for the correct result of the election
w.r.t. the voters who submitted valid ballots will be rejected.

If a voting scheme is universally verifiable according to Definition 19, and
in a run of its protocol we have that B ∈ L, then by the first and third
condition in Definition 19 it follows that in this run

(B, res,Vcast) ∈ L′ ⇔ (res,Vcast) = (f ′(B), f ′′(B)).

By the second requirement for voting schemes (computation of the result),
the fact that B ∈ L and (res,Vcast) = (f ′(B), f ′′(B)) hold true in a run implies
that the same run satisfies γ0 as introduced in Definition 4. Conversely, the
fact that a protocol run satisfies γ0 does not imply that B ∈ L holds true in
the same run, and in particular, γ0 does not imply (B, res,Vcast) ∈ L′. To see
this, consider the case above where invalid ballots are removed.

The conditions in Definition 19 have to be fulfilled in every run of the
protocol, and not only with overwhelming probability. This requirement is
typically too strong.

5.10.4 Casting in the KTV Framework

Protocol PCFPST . The set of agents Σ consists of the voters, the judge J
and the remaining participants. Let B and L be defined as in the model of
Chevallier-Mames et al. (Section 5.10.1). Since static corruption is consid-
ered, the agents only accept to be corrupted at the beginning of an election
run. The voters, the bulletin board, and the judge do not accept to be
corrupted.

When Vi runs her honest program πVi
, she expects a candidate chi as

input. If the input is empty, or if the input is not empty but the voter has
already been triggered and received a candidate before, she stops. Otherwise,
she runs Vote(chi).

The honest program πJ of the judge J depends on the concrete election
scheme. Intuitively, when the judge runs her honest program, she receives

138

(B, res,Vcast) along with a zero-knowledge proof as her input, and then evalu-
ates whether (B, res,Vcast) ∈ L′ holds true. She outputs ”accept” if and only
if the evaluation is positive.

Universal verifiability. Let the goal γ0 be defined as in Definition 4
by Küsters et al., and the language L be defined as in Section 5.10.1. For
the protocol PCFPST , universal verifiability according to Chevallier-Mames
et al. (Definition 19) can essentially be characterized by the fact that the
protocol PCFPST is (γ0 ∩ L, 0)-verifiable in the sense of Definition 1.

To see this, first note that if γ0 is not satisfied in a run, then by the
first and third condition in Definition 19 we have (B, res,Vcast) /∈ L′. Conse-
quently, an honest judge as sketched above, does not accept the run. How-
ever, as shown above, there are runs in which γ0 is satisfied but an honest
judge as sketched above does not accept the run because B /∈ L holds true.
Therefore, the goal γ requires that in a run γ0 and B ∈ L must hold true in
order to describe Definition 19.

Definition 19 does not require any variant of fairness. The reason is
that if all voting authorities are honest but one single voter is dishonest and
submits an invalid ballot, then the judge (as sketched above) does not accept
the result although γ0 is achieved (see Discussion 5.10.3).

5.11 Universal Verifiability by Szepieniec et

al.

In this section, we present and discuss the definition of universal verifiability
by Szepieniec et al. [SP15]. Due to its shortcomings (see discussion below),
we omit the casting in the KTV framework.

5.11.1 Model

Definition 20 is supposed to be applicable to any protocol P that can be
analyzed in the universal composability (UC) framework.

5.11.2 Universal Verifiability

In the universal verifiability definition by Szepieniec et al. , the judge J takes
as input the transcript as produced by an adversary A attacking a protocol P .
The judge eventually outputs a bit b̃. Let b be a variable indicating whether
the protocol was executed correctly by all parties – i.e., the parties behaved
honestly and were not corrupted by the adversary – and if the transcript is
authentic, by assuming the value 1 if this is the case and 0 otherwise.

139

Definition 20 (Universal Verifiability). A protocol P is universally verifiable
if there exists a judge J such that, for all adversaries A attacking the protocol,
Ver has significant distinguishing power:∣∣∣Pr[b = b̃]− Pr[b 6= b̃]

∣∣∣ ≥ 1

2
,

where the probabilities are taken over all random coins used by J, A and P .

Szepieniec et al. stress that the judge J in Definition 20 must be able
to differentiate between simulated parties created by the adversary A and
genuine protocol participants.

5.11.3 Discussion

The universal verifiability definition by Szepieniec et al. has two fundamental
shortcomings.

Firstly, elementary expressions used in Definition 20 remain undefined
in [SP15]. For example, it is unclear what the terms ”attacking the protocol”,
”behaved honestly” and ”corrupted” formally mean.

Secondly, if one assumes common definitions of honest/corrupted, the
universal verifiability definition is clearly too strong because, as Szepieniec
et al. point out, the judge must be able to differentiate between honest and
dishonest participants. This is, however, typically impossible for any (not
necessarily ppt) judge in any protocol because a corrupted participant can
still follow its honest program. On a high level, Definition 20 requires that
there has to exist a judge who can ”look inside” the (corrupted) participants,
rather than a judge who opts for possible deviations in the publicly available
data.

5.12 Summary and Conclusion

In the previous sections, we have studied the formal definitions of verifiabil-
ity for e-voting system proposed in the literature. We have presented the
original definitions and cast them in the KTV framework. This casting has
demonstrated that the essence of these notions can be captured within a
uniform framework and enabled us to identify their relative and recurrent
merits and weaknesses as well as their specific (partly severe) limitations and
problems.

In Section 5.12.1, we distill these discussions and insights into detailed
requirements and guidelines that highlight several aspects any verifiability
definition should cover. We also summarize from the previous sections how

140

the different existing definitions of verifiability from the literature handle
these aspects. Finally, in Section 5.12.2, as a viable and concrete embodiment
of our guidelines, we instantiate the KTV framework accordingly, obtaining
a solid and ready to use definition of verifiability.

5.12.1 Guidelines

We now present our requirements and guidelines for the following central
aspects, along with a summary of the previous sections concerning these
aspects.

Generality. Many verifiability definitions are designed for protocols with
specific protocol structures and are tailored to them (see Sections 5.4, 5.5,
5.6, 5.7, 5.8). As a result, for new classes of protocols often new definitions
are necessary.

Clearly, it is desirable for a verifiability definition to be applicable to as
many protocols as possible. It provides not only reusability, but also compa-
rability: by applying the same definition to different protocols and protocol
classes we can clearly see the differences in the level and nature of verifiability
they provide. A very minimal set of assumptions on the protocol structure is
sufficient to express a meaningful notion of verifiability, as illustrated by the
definition in Section 5.2 and also by the instantiation of the KTV framework
given below.

Note, however, that some additional assumptions on the protocol struc-
ture allow one to express some specific properties, such as universal verifiabil-
ity, which, as discussed in the previous sections, on their own do not capture
end-to-end verifiability, but may be seen as valuable additions.

Static versus dynamic corruption. We observe that most of the studied
verifiability definitions focus on static corruption, except the definitions in
Sections 5.4 and 5.5, which capture the dynamic corruption of voters. In
general, modeling dynamic corruption can yield stronger security guarantees.
In the context of verifiability, one could, for example, provide guarantees
not only to honest voters but also to certain corrupted voters. If a voter is
corrupted only late in the election, e.g., when the voting phase, one might still
want to guarantee that her vote is counted. None of the existing definitions
provide this kind of guarantee so far. We briefly discuss how this can be
captured in the KTV framework in Section 5.12.2.

Binary versus quantitative verifiability. As discussed in Section 2.3,
the probability δ (see Definition 1) that under realistic assumptions some
cheating by an adversary remains undetected may be bigger than 0 even for
reasonable protocols: often some kind of partial and/or probabilistic checking

141

is carried out, with Benaloh audits (see Section 5.5.7) being an example.
These checks might fail to detect manipulations with some non-negligible
probability. Still, as we have seen when casting the different verifiability
notions in the KTV framework, most of the studied definitions assume the
verifiability tolerance to be δ = 0. This yields a binary notion of verifiability
which, as explained, outright rejects reasonable protocols.

In contrast, the definitions studied in the KTV framework (including
Section 5.2) as well as the ones in Sections 5.3 and 5.4 , allow for measuring
the level of verifiability. This gives more expressiveness and allows one to
establish meaningful verifiability results for (reasonable) protocols which do
not provide perfect verifiability.

Goals. As pointed out in Section 5.2, the goal γ0, which, among others,
requires that all the ballots cast by honest voters are correctly tallied and
make it to the final result is very strong and typically too strong. In order
to satisfy this goal very strong trust assumptions are necessary, for instance,
the assumptions taken in the definition of weak verifiability in Section 5.5.

From the previous sections, two main and reasonable approaches for defin-
ing a goal emerged, which one could characterize as quantitative and quali-
tative, respectively:

• Quantitative. In Section 5.2, a family of goals γk, k ≥ 0, together
with a non-zero tolerance level δ is considered; a similar approach is
taken in Section 5.4, but see the discussion in this section. This ap-
proach, among others, captures that the probability that more than
k votes of honest voters can be changed without anybody noticing
should be small, i.e., bounded by δ. To be more precise and allow for
stronger guarantees, this approach could be combined with an aspect
of the goal defined for strong verifiability, namely the distinction be-
tween votes that are manipulated and those that are “just” dropped
(see Section 5.5).

• Qualitative. In Section 5.5 (“strong verifiability”), the protocol goal
(as cast in the KTV framework), among others, stipulates that votes
of voters who verify their receipt are contained in the final result. To
be general, this approach should also be combined with a non-zero
tolerance level δ (which, however, was not captured in the original
definition). The reason is that checks (such as Benaloh challenges)
might not be perfect, i.e., manipulation might go undetected with some
probability.

In both cases, votes of dishonest voters were restricted to be counted at most
once (no ballot stuffing).

142

The quantitative approach, on the one hand, provides overall guarantees
about the deviation of the published result from the correct one and measures
the probability δ that the deviation is too big (bigger than k) but nobody
notices this. On the other hand, it does not explicitly require that voters who
check their receipts can be sure (up to some probability) that their votes were
counted. But, of course, to prove verifiability of a system w.r.t. this goal, one
has to take into account whether or not voters checked, and more precisely,
the probabilities thereof. These probabilities also capture the uncertainty
of the adversary about whether or not specific voters check, and by this,
provides protection even for voters who do not check.

The qualitative approach explicitly provides guarantees for those honest
voters who verify their receipts. On the one hand, this has the advantage that
one does not need to consider probabilities of voters checking or not, which
simplifies the analysis of systems. On the other hand, such probabilities of
course play an important role for measuring the overall security of a system,
an aspect this simpler approach abstracts away. Nevertheless, it provides a
good qualitative assessment of a system.

Interestingly, one could in principle combine both approaches, i.e., con-
sider the intersection of both goals. While this would give voters also in the
quantitative approach direct guarantees (in addition to the aspect of making
a distinction between manipulating and dropping votes, mentioned above al-
ready), it would typically not really change the analysis and its result: as
mentioned, in the quantitative analysis one would anyway have to analyze
and take into account the guarantees offered when checking receipts.

Below, we provide concrete instantiations for both approaches in the KTV
framework.

Ballot stuffing. Not all definitions of verifiabiltiy rule out ballot stuffing,
even though ballot stuffing, if unnoticed, can dramatically change the election
result. Some definitions go even further and abstract away from this problem
by assuming that there are only honest voters (see trust assumptions below).

Clearly, allowing undetected ballot stuffing makes a verifiability defini-
tion too weak. We recommend that a verifiability definition should exclude
undetected ballot stuffing. It might also be useful to capture different levels
of ballot stuffing in order to distinguish systems where it is very risky to add
even a small number of ballots from those where adding such a small number
is relatively safe. The goals discussed above, as mentioned, both require that
no ballot stuffing is possible at all.

Trust assumptions. Some verifiability definitions assume some protocol
participants to be always honest, for example the bulletin board (Sections 5.3,
5.4, 5.9, 5.6, 5.7, 5.8), 5.10 or all voters (Section 5.7) or all voter supporting

143

devices (Sections 5.6, 5.5), or some disjunctions of participants (Section 5.5);
the definition discussed in Section 5.2 does not make such assumptions. We
think that verifiability definitions which rely on the unrealistic assumption
that all voters are honest are too weak. The other trust assumptions might be
reasonable depending on the threat scenario. A general verifiability definition
should be capable of expressing different trust assumptions and make them
explicit; embedding trust assumptions into a definition not only makes the
definition less general, but also makes the assumptions more implicit, and
hence, easy to overlook.

Individual and universal verifiability. In Section 5.6 and 5.8, defini-
tions of individual and universal verifiability were presented. We already
pointed out that the split-up of end-to-end verifiability into sub-properties is
problematic. In fact, Küsters et al. [KTV12b] have proven that, in general,
individual and universal verifiability (even assuming that only eligible voters
vote) do not imply end-to-end verifiability, e.g. for ThreeBallot [Smi07] (see
Section 2.3.3). For the definitions of individual and universal verifiability
presented in Section 5.5, it was shown in [CEK+15] that they imply end-to-
end verifiability under the assumption that there are no clashes [KTV12b].
However, the notion of end-to-end verifiability considered there is too weak
since it allows ballot stuffing. For the definitions of individual and univer-
sal verifiability in Section 5.6 no such proof was provided, and therefore, it
remains unclear whether it implies end-to-end verifiability. (In fact, techni-
cally these definitions, without some fixes applied, do not provide end-to-end
verifiability as pointed out in Section 5.6.)

The (combination of) notions of individual and universal verifiability (and
other properties and subproperties, such as eligibility verifiability, cast-as-
intended, recorded-as-cast, and counted-as-recorded) should not be used as
a replacement for end-to-end verifiability per se since they capture only spe-
cific aspects rather than the full picture. Unless formally proven that their
combination in fact implies end-to-end verifiability they might miss impor-
tant aspects, as discussed above. Therefore, the security analysis of e-voting
systems should be based on the notion of end-to-end verifiability (as, for ex-
ample, concretely defined below). Subproperties could then possibly be used
as useful proof techniques.

5.12.2 Exemplified Instantiation of the Guidelines

We now demonstrate how the guidelines given above can be put into practice,
using, as an example, the KTV framework. By this, we obtain a solid, ready-
to-use definition of verifiability. More specifically, we propose two variants,

144

one for qualitative and one for quantitative reasoning, as explained next.
The distillation of our observations given in Section 5.12.1 reviews differ-

ent aspects of verifiability and, in most cases, it clearly identifies the best and
favorable ways they should be handled by verifiability definitions. When it
comes to the distinction between qualitative and quantitative approaches to
define verifiability goals, we have, however, found out that both approaches
have merits and both can yield viable definitions of verifiability. This is
why we propose two instantiations of the KTV framework, one following the
qualitative approach and one for the quantitative approach.

To instantiate the KTV framework, one only has to provide a definition
of a goal (a family of goals) that a protocol is supposed to guarantee. Note
that, as for the second parameter of Definition 1, δ, one should always try, for
a given goal, to establish an as small δ as possible. In other words, the value
of δ is the result of the analysis of a concrete system, rather than something
fixed up front.

In the following, we define two goals corresponding to the two variants of
verifiability discussed above: goal γql(ϕ) for the qualitative variant and goal
γqn(k, ϕ) for the quantitative one. We explain the meaning of the parameters
below. Here we only remark that the common parameter ϕ describes the
trust assumptions (i.e., it determines which parties are assumed to be honest
and which can be corrupted and when) under which the protocol is supposed
to provide specific guarantees. Recall that, in the KTV framework, the
adversary sends a special message corrupt to a participant in order to corrupt
it (a participant can then accept or reject such a message). This allows for
modeling various forms of static and dynamic corruption. Note also that it
is easily visible, given a run, if and when a party is corrupted.

In the following, for a given run r of an e-voting protocol with nvoters

eligible voters, we denote by nhonest
voters the number of honest and by ndishonest

voters the
number of dishonest voters in r. Recall that we say a party is honest in a run
r if it has not received a corrupt message or at least has not accepted such a
message throughout the whole run. We denote by ch1, . . . , chnhonest

voters
the actual

choices of the honest voters in this run (which might include abstention), as
defined in Section 2.3.

Qualitative goal. The goal γql(ϕ) we define here corresponds to the strong
verifiability goal γSV from Section 5.5. In contrast to γSV , γql(ϕ) has the
parameter ϕ for the trust assumptions, which were fixed in γSV . Informally,
this goal requires that, if the trust assumption ϕ holds true in a protocol
run, then (i) the choices of all honest voters who successfully performed
their checks are included in the final result, (ii) votes of those honest voters
who did not performed their check may be dropped, but not altered, and

145

(iii) there is only at most one ballot cast for every dishonest voter (no ballot
stuffing). If the trust assumptions ϕ are not met in a protocol run, we do not
expect the protocol to provide any guarantees in this run. For example, if in
a setting with two bulletin boards, ϕ says that at least one of the bulletin
boards should be honest in a run, but in the run considered both have been
corrupted by the adversary, then no guarantees need to be provided in this
run.

Formally, the goal γql(ϕ) is satisfied in r (i.e., r ∈ γql(ϕ)) if either (a) the
trust assumption ϕ does not hold true in r, or if (b) ϕ holds true in r and
there exist valid choices c̃h1, . . . , c̃hnvoters for which the following conditions
are satisfied:

1. An election result is published in r and it equals to fres(c̃h1, . . . , c̃hnvoters).

2. The multiset {c̃h1, . . . , c̃hnvoters} consists of all the actual choices of hon-
est voters who successfully performed their check, plus a subset of ac-
tual choices of honest voters who did not perform their check (success-
fully), and plus at most ndishonest

voters additional choices.

If the checks performed by voters do not fully guarantee that their votes are
actually counted, because, for example, Benaloh checks were performed (and
hence, some probabilistic checking), then along with this goal one will obtain
a δ > 0, as there is some probability for cheating going undetected. Also,
the requirement that votes of honest voters who do not checked can at most
be dropped, but not altered, might only be achievable under certain trust
assumptions. If one wants to make weaker trust assumptions, one would
have to weaken γql(ϕ) accordingly.

Quantitative goal. The goal γqn(k, ϕ) of the quantitative verifiability
definition is a refinement of the goal γk from Section 5.2 (note that now, ϕ
can specify trust assumption with dynamic corruption). The goal γqn(k, ϕ) is
the same as the goal γ(k, ϕ) that has been described in Section 2.3.2 and that
has been applied in Section 3.4 and Section 4.4 to analyze the verifiability
level of sElect and Ordinos, respectively.

146

Chapter 6

Conclusion and Future Work

In this thesis, we have contributed to the field of secure e-voting as follows.
Firstly, we have introduced two new e-voting system, sElect and Ordinos,

each of which provides its own balance between usability, security, and prac-
ticality. sElect has been designed to be easy to use and to comprehend, yet to
still provide a good level of security. Ordinos invokes complex cryptographic
primitives and subprotocols in order to hide the tally and thus provide a
superior level of privacy. Importantly, we have formally analyzed sElect and
Ordinos w.r.t. verifiability, accountability, and privacy. Both systems have
been implemented to demonstrate their practicality. One limitation of sElect
is that, for privacy reasons, a voter needs to be able to anonymously publish
blaming evidence on the bulletin board in case a mix server has manipulated
or dropped her vote. Interesting future work includes providing voters with
a simple mechanism to establish such an anonymous channel. Regarding
Ordinos, it would be interesting to also implement the offline phase for mali-
cious environments and to realize more complex result functions, such as the
D’Hondt or Sainte-Laguë methods.

Secondly, we have reviewed all formal definitions of verifiability proposed
in the literature and provided a detailed comparison of them. We have thor-
oughly discussed advantages and disadvantages, and pointed to limitations
and problems. Finally, from these discussions, we have distilled a general def-
inition of verifiability, which can be instantiated in various ways, and provide
precise guidelines for its instantiation.

147

Appendix A

Cryptographic Primitives

A.1 Public-Key Encryption

Public-key encryption schemes. A public-key encryption scheme E
consists of a triple of algorithms E = (KeyGen,Enc,Dec), where

• KeyGen, the key generation algorithm, is a probabilistic algorithm that
takes a security parameter ` as input and returns a pair (pk, sk) of
matching public and secret keys.

• Enc, the encryption algorithm, is a probabilistic algorithm that takes
a public key pk and a message m ∈ {0, 1}∗ as input and outputs a
ciphertext c.

• Dec, the decryption algorithm, is a deterministic algorithm which takes
a secret key sk and a ciphertext c as input and outputs either a message
m ∈ {0, 1}∗ or a special symbol ⊥ to indicate that the ciphertext was
invalid.

We require that for all (pk, sk)← KeyGen(1`), for all m ∈ {0, 1}∗, and for all
c ← Enc(pk,m), we have that Dec(sk, c) = m. We also require that KeyGen,
Enc and Dec can be computed in polynomial time.

Encryption of vectors. Let E = (KeyGen,Enc,Dec) be a public-key en-
cryption scheme. Let m = (m1, . . . ,mn) and c = (c1, . . . , cn) be vectors of
entries in {0, 1}∗. We write

Enc(pk,m) = (Enc(pk,m1), . . . ,Enc(pk,mn))

Dec(sk, c) = (Dec(sk, c1), . . . ,Dec(sk, cn))

for every public key pk and every secret key sk.

148

Challenger. Let E = (KeyGen,Enc,Dec) be a public-key encryption scheme.
The (CCA-) challenger Ch is a probabilistic polynomial-time algorithm that
takes as input a bit b as well as a key pair (pk, sk), and that serves two types
of queries:

• For a vector of messages c, the challenger returns the decryption of c,
that is Dec(sk, c).

• For a pair of vectors of messages (m0,m1) where both vectors have the
same size and all messages at the same position in the vectors have
the same length, the challenger encrypts mb under pk and returns the
vector of ciphertexts, that is Enc(pk,mb).

IND-CCA2-security. Let E = (KeyGen,Enc,Dec) be a public-key encryp-
tion scheme with security parameter ` and let Ch be the challenger. Then the
encryption scheme E is IND-CCA2-secure, if for every polynomially bounded
adversary A who never submits decryption queries for (parts of) a vector of
messages c previously returned by a challenge query, we have that

|Pr
[
(pk, sk)← KeyGen(1`); b′ ← ACh(1,pk,sk)(1`, pk); b′ = 1

]
− Pr

[
(pk, sk)← KeyGen(1`); b′ ← ACh(0,pk,sk)(1`, pk); b′ = 0

]
|

is a negligible function in `.

Threshold Public-Key Encryption Scheme. Let ntrustees be the number
of trustees Tk and t be a threshold. Let prm be the parameters including the
security parameter 1`.1 A (ntrustees, t)-threshold public-key encryption scheme
is a tuple of polynomial-time algorithms (KeyShareGen,PublicKeyGen,Enc,
DecShare,Dec) such that:

• KeyShareGen (which is run by a single trustee Tk) is probabilistic and
outputs two keys (pkk, skk), called the public-key share pkk and the
secret-key share skk,

• PublicKeyGen is deterministic and takes as input public-key shares
pk1, . . . , pkntrustees

, and outputs a public key pk; this algorithm may fail
(output ⊥) if the public-key shares are invalid,

• Enc is probabilistic and takes as input a public key pk and a message
m, and outputs a ciphertext c,

• DecShare (which is run by a single trustee Tk) is probabilistic and
takes as input a ciphertext c and a secret-key share skk, and outputs a
decryption share deck,

1We implicitly assume that all algorithms have prm as input.

149

• Dec is deterministic and takes as input a tuple of decryption shares and
returns a message m or ⊥, in the case that decryption fails.

Furthermore, the following correctness condition has to be guaranteed.
Let (pkk, skk) ← KeyShareGen for all k ∈ {1, . . . , ntrustees} and let pk ←
PublicKeyGen(pk1, . . . , pkntrustees

). Let c ← Enc(pk,m), and for all k ∈ I ⊆
{1, . . . , ntrustees}, let deck ← DecShare(skk, c). Then, we have

Dec({deck}k∈I) =

{
m if |I| ≥ t

⊥ otherwise
.

IND-CPA Security. Let (KeyShareGen,PublicKeyGen,Enc,DecShare,Dec)
be a (ntrustees, t)-threshold public-key encryption scheme.

Let ChEnc be a ppt algorithm, called a (CPA-) challenger, which takes
as input a bit b and a public key pk and (only) serves the second challenge
query of the CCA-challenger defined above.

Let A = (A1,A2,A3) be an adversary, where A1,A2,A3 share state and A3

has oracle access to ChEnc.
Let ExpA(b) be defined as follows:

1. I ← A1() where I ⊆ {1, . . . , ntrustees} and |I| ≥ t

2. (pki, ski)← KeyShareGen() for i ∈ I

3. pkj ← A2({pki}i∈I) for j ∈ {1, . . . , ntrustees} \ I

4. pk← PublicKeyGen(pk1, . . . , pkntrustees
)

5. b′ ← A
ChEnc(b,pk)
3 ()

6. output b′

We say that the (ntrustees, t)-threshold public-key encryption scheme is
IND-CPA secure if for all ppt adversaries A = (A1,A2,A3)

|Pr(ExpA(0) outputs 1)− Pr(ExpA(1) outputs 1)|

is negligible as a function in the security parameter `.

150

A.2 Digital Signatures

Signature schemes. A digital signature scheme S is a triple of polynomial-
time algorithms S = (KeyGen, Sign,Verify), where

1. KeyGen, the key generation algorithm, is a probabilistic algorithm that
takes a security parameter ` and returns a pair (Verify, sign) of matching
secret signing and public verification keys.

2. Sign, the signing algorithm, is a (possibly) probabilistic algorithm that
takes a private signing key sign and a message x ∈ {0, 1}∗ to produce
a signature σ.

3. Verify, the verification algorithm, is a deterministic algorithm which
takes a public verification key Verify, a message x ∈ {0, 1}∗ and a
signature σ to produce a boolean value.

We require that for all key pairs (Verify, sign) which can be output by the key
generation algorithm KeyGen(1`), for all messages x ∈ {0, 1}∗, and for all sig-
natures σ that can be output by Sign(sign, x), we have that Verify(Verify, x, σ)
equals to true. We also require that KeyGen, Sign and Verify can be computed
in polynomial time.

EUF-CMA-secure. Let (KeyGen, Sign,Verify) be a signature scheme with
security parameter `. Then the signature scheme is existentially unforge-
able under adaptive chosen-message attacks (EUF-CMA-secure) if for every
probabilistic (polynomial-time) algorithm A who has access to a signing or-
acle and who never outputs tuples (x, σ) for which x has previously been
signed by the oracle, we have that

Pr((Verify, sign)← KeyGen(1`);

(x, σ)← ASign(sign,·)(1`,Verify);Verify(Verify, x, σ) = true)

is negligible as a function in `.

A.3 Non-Interactive Zero-Knowledge Proofs

A.3.1 Definitions

Non-Interactive Proof Systems. Let R be an efficiently computable
binary relation. For pairs (x,w) ∈ R, x is called the statement and w is
called the witness. Let LR = {x | ∃w : (x,w) ∈ R}. A non-interactive
proof system for the language LR is a tuple of probabilistic polynomial-time
algorithms (Setup,Prover,Ver), where

151

• Setup (the common reference string generator) takes as input a secu-
rity parameter 1` and the statement length n and produces a common
reference string σ ← Setup(n),2

• Prover takes as input the security parameter 1`, a common reference
string σ, a statement x, and a witness w and produces a proof π ←
Prover(σ, x, w),

• Ver takes as input the security parameter 1`, a common reference string
σ, a statement x, and a proof π and outputs 1/0 ← Ver(σ, x, w) de-
pending on whether it accepts π as a proof of x or not,

such that the following conditions are satisfied:

• (Computational) Completeness: Let n = `O(1) and A be an adversary
that outputs (x,w) ∈ R with |x| = n. Then, the probability

Pr(σ ← Setup(n);

(x,w)← A(σ);π ← Prover(σ, x, w); b← Ver(σ, x, π) : b = 1)

is overwhelming (as a function of the security parameter 1`). In other
words, this condition guarantees that an honest prover should always
be able to convince an honest verifier of a true statement (which can
be chosen by the adversary A).

• (Computational) Soundness: Let n = `O(1) and A be a non-uniform
polynomial time adversary. Then, the probability

Pr(σ ← Setup(n); (x, π)← A(σ); b← Ver(σ, x, π) : b = 1 and x /∈ LR)

is negligible (as a function of the security parameter 1`). In other words,
this condition guarantees that it should be infeasible for an adversary
to come up with a proof π of a false statement x that is nevertheless
accepted by the verifier.

Zero-Knowledge. We say that a non-interactive proof system (Setup,
Prover,Ver) is zero-knowledge (NIZKP) if the following condition is satisfied.

Let n = `O(1). There exists a polynomial-time simulator Sim = (Sim1,
Sim2) such that for all stateful, interactive, non-uniform polynomial-time
adversaries A = (A1,A2) that output (x,w) ∈ R with |x| = n, we have

Pr(σ ← Setup(n); (x,w)← A1(σ);π ← Prover(σ, x, w); b← A2(π) : b = 1)

≈ Pr((σ, τ)← Sim1(n); (x,w)← A1(σ);π ← Sim2(σ, x, τ); b← A2(π) : b = 1)

2For simplicity of notation, we omit the security parameter in the notation, also for
the prover and the verifier.

152

(where ≈means that the difference between the two probabilities is negligible
as a function of the security parameter).

We use here the single-theorem variant of the zero-knowledge property,
where the common reference string is used to produce (and verify) only one
ZK proof, as opposed to the (general) multi-theorem variant of the zero-
knowledge property, where the same common reference string can be used to
produce many proofs. This suffices for our application, because, in the voting
protocol we consider, the number of ZK-proofs is bounded, which corresponds
to the case, where A can only submit a bounded number of queries. In such
a case, the single-theorem variant of the zero-knowledge property implies the
multi-theorem variant (the length of σ can be expanded by a factor of M ,
where M is the bound on the number of ZKPs).

Proof of Knowledge. We say that a non-interactive proof system (Setup,
Prover,Ver) produces a proof of knowledge if the following condition is satis-
fied.

There exists a knowledge extractor Extr = (Extr1,Extr2) such that for
n = `O(1), the following conditions hold true:

• For all non-uniform polynomial-time adversaries A, we have that

Pr(σ ← Setup(n); b← A(σ) : b = 1)

≈ Pr((σ, τ)← Extr1(n); b← A(σ) : b = 1).

• For all non-uniform polynomial-time adversaries A, we have that the
probability

Pr((σ, τ)← Extr1(n); (x, π)← A(σ);

w ← Extr2(σ, τ, x, π);

b← Ver(σ, x, π) : b = 0 or (x,w) ∈ R)

is overwhelming (as a function of the security parameter).

Note that (computational) knowledge extraction implies the existence of a
witness and, therefore, it implies (computational) adaptive soundness.

A.3.2 (NIZK) Proofs used in Ordinos

Let (KeyShareGen,KeyGen,Enc,DecShare,Dec) be a (threshold) public-key
encryption scheme as defined in A.1. Then, the zero-knowledge proofs used
in the voting protocol are formally defined as follows:

153

• NIZKP πKeyShareGen of knowledge and correctness of the private key
share. For a given public key pki, the statement is:

∃ski : (pki, ski) is a valid key share pair.

• NIZKP πEnc of knowledge and correctness of plaintext(s). Let Rm be
an n-ary relation over the plaintext space. For (c1, . . . , cn, pk), the
statement is:

∃(m1, . . . ,mn) ∈ Rm ∀i ∃ri : ci = Enc(pk,mi; ri).

154

Appendix B

Secure Multiparty
Computation

An MPC protocol is run among a set of trustees T1, . . . ,Tntrustees in order to
evaluate a given function fMPC over secret inputs. Some of these trustees
may be corrupted by the adversary A. We are interested in the case that the
adversary is allowed to let the corrupted parties actively deviate from their
honest protocol specification, i.e., that corrupted trustees can run arbitrary
ppt programs. Such adversaries are called malicious (in contrast to the
weaker notion of honest-but-curious or passive adversaries). We assume that,
before a protocol run starts, the set of corrupted parties is already determined
and does not change throughout the run. Such adversaries are called static
(in contrast to the stronger notion of dynamic adversaries).

In this section, we specify the security properties for the protocols that
can be used in Ordinos. We first note that we can model each MPC protocol
as a protocol PMPC in the computational model presented in Section 2.2. More
precisely, each protocol PMPC is run among the set of trustees, a scheduler
SMPC, a bulletin board BMPC and a judge JMPC. The roles of the latter parties
are the same as for the Ordinos voting protocol, in particular, they are all
assumed honest (recall Section 4.3 for details).

Typically, PMPC is split into a setup or offline protocol in which the
trustees generate key material, special randomness, etc., and a computing
or online protocol in which the trustees secretely evaluate fMPC over some
secret inputs. In what follows, we are only interested in the online protocol
and assume that the offline protocol has been executed honestly.

On a high level, the input to the (online) protocol is a vector of plain-
texts (m1, . . . ,mm), each of which is encrypted under the public key pk of a
(t, ntrustees)-threshold public-key encryption scheme E . Each trustee Tk holds
a secret key share skk relating to the public key pk. If at least t trustees are

155

honest, the (correct) output is fMPC(m1, . . . ,mm), where fMPC is the given
function to be secretely evaluated.

In what follows, we precisely define the security properties, privacy and
individual accountability, that the MPC protocol PMPC invoked in Ordinos is
supposed to guarantee so that Ordinos provides privacy and accountability
(Theorem 6 and 7).

B.1 Privacy

On a high level, an MPC protocol provides privacy if the adversary only
learns the outcome of the MPC protocol but nothing else if he corrupts less
than t trustees. We formally define this idea with an ideal MPC protocol as
follows. We say that PMPC provides privacy if it realizes IMPC(E , fMPC), as
defined in Fig. B.1.

B.2 Individual Accountability

We require that if the real outcome of PMPC does not correspond to its input,
then PMPC provides evidence to individually blame (at least) one misbehav-
ing trustee Tk. More precisely, we require that the protocol PMPC provides
individual accountability for the goal γMPC(ϕ), where the trust assumption
is

ϕ = hon(SMPC) ∧ hon(BMPC) ∧ hon(JMPC),

and goal γMPC(ϕ) is the goal γ(0, ϕ) w.r.t. the input plaintexts (m1, . . . ,mm)
to the MPC protocol (recall Section 2.3 for details). Formally, the account-
ability property Φ of PMPC consists of the constraint

¬γMPC(ϕ)⇒ dis(T1)| . . . |dis(Tntrustees),

and accountability level 0. In other words, if the adversary tries to change
the outcome, at least one of the corrupted trustees will be identified with
overwhelming probability.

156

IMPC(E , fMPC)

Parameters:

• A (t, ntrustees)-threshold public-key encryption scheme E .

• Function fMPC : {0, 1}∗ → {0, 1}∗.

• Number of honest trustees nhonesttrustees.
a

• K ← ∅ (initially).

On (getKeyShare, k) from S do:

1. If k /∈ {1, . . . , nhonesttrustees}, return ⊥.

2. Set (pkk, skk)← KeyShareGen and K ← K ∪ {k}.

3. Return pkk to S.

On (setKeyShare, k, sk) from S do:

1. If k /∈ {nhonesttrustees + 1, . . . , ntrustees}, return ⊥.

2. Set skk ← sk and K ← K ∪ {k}.

3. Return success.

On (compute, b, c1, . . . , cm) from S do:

1. If b = 0, return ⊥.

2. ∀i ∈ {1, . . . ,m}:

(a) ∀k ∈ K : deci,k ← DecShare(ci, skk).

(b) mi ← Dec(deci,1, . . . , deci,ntrustees).

(c) If mi = ⊥, return ⊥.

3. Return res← fMPC(m1, . . . ,mm) to S.

aW.l.o.g., we assume that the first nhonesttrustees are honest.

Figure B.1: Ideal MPC protocol.

157

Appendix C

Formal Proofs

C.1 Verifiability and Accountability Proof for

sElect

In this section, we first formally prove the accountability result of sElect
(Theorem 3).

Lemma 1 (Fairness). Under the assumptions stated at the beginning of Sec-
tion 3.5 and the mentioned judging procedure run by the judge J, the judge J is
computationally fair in the protocol PsElect(nvoters, nservers, µ, p

vote
verif , p

abst
verif , fsElect).

Proving fairness follows immediately from the correctness of the encryp-
tion scheme and the signature scheme invoked.

Lemma 2 (Completeness). Under the assumptions stated at the beginning
of Section 3.5 and the mentioned judging procedure run by the judge J, for
PsElect(nvoters, nservers, µ, p

vote
verif , p

abst
verif , fsElect) we have that

Pr[π(1`) 7→ ¬(J : Φk)] ≤ δk(p
vote
verif , p

abst
verif)

with overwhelming probability as a function of `.

Proof. In order to prove the lemma, we have to show that the probabilities

Pr[π(1`) 7→ (χi ∧ ¬dis(Vi) ∧ ¬dis(AS))],

Pr[π(1`) 7→ (χ′i ∧ ¬dis(Vi) ∧ ¬dis(AS))], and

Pr[π(1`) 7→ (¬γ(k, ϕ) ∧ ¬χ ∧ ¬dis(AS) ∧ ¬dis(M1) ∧ . . . ∧ ¬dis(Mnservers))]

are δk(p
vote
verif , p

abst
verif)-bounded for every i ∈ {1, . . . , nvoters}.

158

The first two probabilities are equal to 0. In fact, if a voter Vi complains
in an authenticated way that she did not receive a valid acknowledgement
although she submitted a valid ballot (i.e., when χi holds true), or if Vi
complains in an authenticated way that she abstained from voting although
her name appears in a ballot in ~b (i.e., when χ′i holds true), then, by the
definition of the honest programs, the honest bulletin board B publishes the
respective complaint and the judge J outputs the verdict dis(Vi) ∨ dis(AS).

To complete the proof, we need to show that the probability of the event

X = ¬γ(k, ϕ) ∧ ¬χ ∧ ¬IB

is δk(p
vote
verif , p

abst
verif)-bounded as a function of `, where

IB = dis(AS) ∨ dis(M1) ∨ . . . ∨ dis(Mnservers).

In other words, ¬IB describes the event that none of the mix servers M or
the authentication server AS are individually blamed by the judge J.

Let β = χ1 ∪ · · · ∪ χn and β′ = χ′1 ∪ · · · ∪ χ′n (note that ¬χ = ¬β ∧ ¬β′).
Finally, let Y = (¬γk ∧ ¬β). We can now write X = Y ∧ ¬β′ ∧ ¬IB.

To show that X is δk(p
vote
verif , p

abst
verif)-bounded, we will show a stronger fact,

namely, we will show that Pr [¬IB ∧ ¬β′ | Y] ≤ δk(p
vote
verif , p

abst
verif) (assuming that

the probability of Y is > 0, as otherwise the proof is trivial).
First, let us observe that in runs in Y the following is true. Since ¬β

holds true, we know that ¬χi holds true for every voter Vi. In particular,
this means that no honest voter who cast a ballot claims that she has not
received a valid acknowledgement. Therefore, for all runs in Y , each honest
voter must have received a valid acknowledgement if she cast a ballot. It
follows that every honest voter who cast a ballot has all the data necessary
to individually blame a server (acknowledgement and random coins used to
encrypt her vote), if this server manipulates her vote (i.e., if the pair αinservers

does not appear in the result list).
Recall that a run r of an instance π of PsElect is determined by the random

coins the dishonest parties in π (the adversary) and the honest parties use.
Let ω denote the random coins used in r. We can represent ω as 〈ω′, ωv〉 where
ωv are the random coins used by the honest voters to determine whether they
check their verification codes (see Section 3.2, the verification phase) and ω′

contains the remaining part of ω. Note that ω′ completely determines the
run of the protocol up to the verification phase. In particular, ω′ determines
the output of the last mix server and it determines whether the goal γ(k, ϕ)
is satisfied or not (γ(k, ϕ) does not depend on ωv). Let us interpret ω′ as
an event, i.e., a set of runs of PsElect where the random coins are partially
fixed to be ω′ and ωv is arbitrary. Then there are two possible cases. Either

159

the adversary is k-risk-avoiding in all runs of ω′, and hence, ω′ ⊆ γ(k, ϕ),
or the adversary is not k-risk-avoiding in all runs of ω′, i.e., ω′ ∩ γ′k = ∅. In
particular ω′ determines whether β is satisfied or not. This means that either
ω′ ⊆ Y or ω′ ∩ Y = ∅.

Let ΩY be the set of those ω′ that are inside Y . To complete the proof,
it is enough to show that, for each ω′ ∈ ΩY we have

Pr [¬IB ∧ ¬β′ | ω′] ≤ δk(p
vote
verif , p

abst
verif). (C.1)

Let us recall that ω′ completely determines the run up to the audit coins
(which are drawn, when the result is already determined). In particular, ω′

determines whether or not a result is published at all. If no result is published,
then, by (J1) of the judging procedure, some server will be blamed individ-
ually, and hence, IB would be true. So, in this case Pr [¬IB ∧ ¬β′ | ω′] = 0.
Otherwise, if a result is output, ω′ also determines

• the set V1 of those honest voters who did not vote, but are listed in ~id,

• the set V2 of those honest voters who cast their ballots, but their
vote/verification code pairs are not listed in the final result and their

ids are not listed in ~id, and

• the set V3 of those honest voters who cast their ballots, but their
vote/verification code pairs are not listed in the final result and their

ids are listed in ~id.

One can see, by the definition of the goal γ(k, ϕ) (which is violated in
ω′), that |V1|+ |V2|+ 2 · |V3| > k (otherwise this goal would not be violated).

Now given V1, V2, V3, it is easy to compute the probability ¬IB∧¬β′ given
ω′: this events happens only when none of the voters in V1, V2, V3 verifies the
result. Note that, indeed, if a voter in V1 verifies the result, she complains
and β′ is automatically satisfied. Similarly, if a voter in V2 or V3 verifies
the result, she complains by providing a valid evidence of misbehaviour (as
discussed above) and the judge states individual blame (IB is satisfied). This
probability is (1− pabstverif)

|V1|(1− pvoteverif)
|V2|+|V3|, because the voters in V1, V2, V3

carry out the verification process with probability pabstverif and pvoteverif , respectively,
independently of anything else (the random coins used in this choices are
independent of ω′ and of each other). Recall that |V1|+ |V2|+ 2 · |V3| > k.

Therefore we have:

Pr [¬IB ∧ ¬β′ | ω′] = (1− pabstverif)
|V1|(1− pvoteverif)

|V2|+|V3|

≤ max
k1+k2+2·k3≥k+1

(1− pabstverif)
k1(1− pvoteverif)

k2+k3

= δk(p
vote
verif , p

abst
verif).

160

This completes the proof.

The proof of the verifiability result (Theorem 2) follows analogously to
the accountability proof presented above. To see this, observe that the ac-
countability proof holds true for the set of protocol runs of sElect in which
no clashes occur. This set of runs has overwhelming probability under the
assumption that the VSDs of honest voters are honest as well which is as-
sumed for accountability. For the verifiability theorem, however, all VSDs
can be dishonest and, hence, there is a non-negligible chance that at least
one clash occurs (denoted by pclash in Theorem 2). We cannot guarantee
that manipulating clashed votes can be detected. For protocol runs without
clashes of honest votes, the accountability proof yields an upper bound (i.e.,
δk(p

vote
verif , p

abst
verif)) for the probability that breaking γ(k, ϕ) remains undetected.

From this, Theorem 2 follows.

C.2 Privacy Proof for sElect

Recall that, by assumption, for all honest voters in PsElect(nvoters, nservers, µ,
pvoteverif , p

abst
verif , fsElect), the length of the candidate plaintext as well as the length

of the nonce, respectively, have the same size in each run of the protocol,
given a security parameter. Also, recall from Section 3.2 that for the public-
key encryption scheme we require that for every public key pk and any two
plaintexts of the same length their encryption always yields ciphertexts of
the same length. It follows that for each mix server Mj, the ciphertext

αij = Enc(pkj, . . .Enc(pknservers
, (candi, codei); r

i
nservers

) . . . ; rij).

computed by an honest voter Vi for Mj must have the same size for all
honest voters. Hence, there exists a function ηj in the security parameter
such that for every instance π(`) of PsElect(nvoters, nservers, µ, p

vote
verif , p

abst
verif , fsElect)

and for every honest voter Vi in π(`) and every run of π(`), the size |αij| of αij
is ηj(`). In what follows, we simply write ηij = ηij(`). In order to determine
ηj one can take an arbitrary candidate and an arbitrary nonce of correct size
and encrypt the pair under the public keys pknservers

, . . . , pkj.
In order to prove the privacy theorem for PsElect(nvoters, nservers, µ, p

vote
verif ,

pabstverif , fsElect) with the voter Vobs under observation, we have to show that∣∣Pr[(π̂Vobs
(ch0)‖π∗)(`) 7→ 1]− Pr[(π̂Vobs

(ch1)‖π∗)(`) 7→ 1]
∣∣ (C.2)

is δideal
(nvoters,nhonest

voters−k,µ)
(fsElect)-bounded as a function of the security parameter

`, for all choices ch0, ch1 (ch0, ch1 6= abstain) and all programs π∗ of the

161

remaining parties such that at least nhonest
voters voters are honest in π∗ (excluding

the voter under observation Vobs) and such that the adversary (the dishonest
parties in π∗) is k-risk-avoiding.

We can split up the composition π∗ in its honest and its (potentially)
dishonest part. Let HV be the set of all honest voters (without the voter
under observation) and π̂HV be the composition of their honest programs.
Recall that the judge J, the scheduler S, the bulletin board B, the voting
authority Auth, and at least one out of mix server are honest (w.l.o.g., we
assume that the j-th mix server is honest). Therefore, the honest part, which
we denote by

π̂H = π̂J‖π̂Auth‖π̂B‖π̂S‖π̂Mj
‖π̂HV,

consists of the honest programs π̂J, π̂Auth, π̂B, π̂S, π̂Tk
, π̂HV of the judge J, the

voting authority Auth, the bulletin board B, the scheduler S, the mix server
Mj, and the honest voters HV, respectively. By π̂H(ch) we will denote the
composition of all honest programs including the program of the voter under
observation Vobs voting for ch, i.e., π̂H(ch) = π̂H‖π̂Vobs

(ch). All remaining
parties are subsumed by the adversarial process πA. This means that we can
write π̂Vobs

(ch)‖π∗ as π̂H(ch)‖πA. Recall that, by assumption, the adversary
πA is k-risk-avoiding.

In order to prove the result, we use a sequence of games. We fix ch ∈ C
and start with Game 0 which is simply the process π̂H(ch)‖πA. Step by step,
we transform Game 0 into Game 4 which is the composition π̂4

H(ch)‖πA for
some process π̂4

H(ch) and the same adversarial process πA. Game 4 will be
proven indistinguishable from Game 0 from the adversary’s point of view,
which means that∣∣Pr[(π̂0

H(ch)‖πA) 7→ 1]− Pr[(π̂4
H(ch)‖πA) 7→ 1]

∣∣
is negligible for a fixed ch ∈ C (as a function of the security parameter).
On the other hand, it will be straightforward to show that in Game 4 for
arbitrary ch0, ch1 ∈ C \ {abstain}, the distance∣∣Pr[(π̂4

H(ch0)‖πA) 7→ 1]− Pr[(π̂4
H(ch1)‖πA) 7→ 1]

∣∣
is bounded by δideal

(nvoters,nhonest
voters−k,µ)

(fsElect) because π̂4
H(ch0) and π̂4

H(ch0) use the

ideal voting protocol for nhonest
voters −k honest voters. Using the triangle inequal-

ity, we can therefore deduce that

|Pr[(π̂H(ch0)‖πA) 7→ 1]− Pr[(π̂H(ch1)‖πA) 7→ 1]|

is δideal
(nvoters,nhonest

voters−k,µ)
(fsElect)-bounded for all ch0, ch1 ∈ C (as a function of the

security parameter).

162

Game 0. In what follows we write π̂0
H(ch) for π̂H(ch) and consider π̂0

H(ch)
as one atomic process (one program) and not as a composition of processes.1

Now, Game 0 is simply the process π̂0
H(ch)‖πA. 4

In the first step, we construct Game 1 which will be proven indistin-
guishable from Game 0 in Claim 1 based on the IND-CCA2-security of the
public-key encryption scheme. More precisely, the adversary will only receive
fake ballots encrypting a random string at the beginning. These fake ballots
will then be replaced in the honest mixing phase by ciphertexts encrypting
the real choices.

Game 1. For Game 1, we modify π̂0
H(ch) in the following way in order to

obtain π̂1
H(ch). Apart from the modifications below, π̂0

H(ch) and π̂1
H(ch) are

identical.
Ballot creation (simulated): Recall that, in order to create her ballot αi0,

an honest voter Vi first chooses a candidate (either cand, if under observation,
or according to µ, otherwise) and a nonce codei, and then encrypts the tuple
under the public keys of the mix servers, starting with the public key pknservers

of the last mix server and then going to the public key pk1 of the first mix
server.

To simulate the process π̂Vi
of an arbitrary honest voter Vi, the process

π̂1
H(ch) follows π̂Vi

until the encryption of Vi’s choice under the public key
pkj+1 of the mix server Mj+1: π̂1

H(ch) first chooses a candidate and a nonce
as before and encrypts it with the public keys pknservers

, . . . , pkj+1 of the mix
servers after the honest mix server Mj to obtain αij (which is supposed to be
the output of Mj). Now, however, π̂1

H(ch) does not encrypt αij (containing the
choice) further. Instead, π̂1

H(ch) encrypts 0ηj under the remaining public keys
pkj, pkj−1, . . . , pk1 to obtain the ciphertexts αij−1, ..., α

i
0, where ηj is defined

as above. The pair αij, α
i
j−1 is logged by π̂1

H(ch) for replacement later on.
After that and before simulating the process π̂Mj

of the honest mix server
Mj, π̂

1
H(ch) and π̂0

H(ch) are identical. This means that the ciphertext αi0
encrypting 0ηj is supposed to fake the ballot of Vi.

Honest mixing (simulated): π̂1
H(ch) simulates π̂Mj

in the following way.
Let ~cj−1 be the input to the (simulated) honest mix server Mj (from the
adversary’s point of view). For all voters Vi whose associated ciphertext
αij−1 is in ~cj−1 (recall that ciphertexts can be dropped or manipulated by the
adversary), π̂1

H(ch) adds αij to its output ~cj (which is supposed to fake the
output of the honest mix server Mj). Apart from this, π̂1

H(ch) follows π̂Mj
.

In particular, if the input to Mj contains a ciphertext c which has not been
logged before as αij−1 (for some i), then this ciphertext is decrypted (using
the decryption key of Mj) and, if successful, added to the output of Mj. 4

1This is w.l.o.g. since every (sub-)process can be simulated by a single program.

163

Game 1 and Game 2 are completely identical with the difference being
that the simulator (i.e., π̂1

H(ch) in Game 1 and π̂2
H(ch) in Game 2) halts if the

adversary dropped or manipulated more than k honest voters’ ciphertexts
prior to the (simulated) honest mix server Mj. In Claim 3, we will show that
this can only happen with negligible probability if the adversary is k-risk-
avoiding. Therefore, Game 1 and Game 2 can be proven computationally
indistinguishable as stated in Claim 4.

Game 2. The process π̂2
H(ch) is completely identical to π̂1

H(ch) with only
one modification: π̂2

H(ch) halts if there are less than nhonest
voters − k ciphertexts

associated to the honest voters in the input ~cj−1 of the (simulated) honest
mix server Mj. In this case, π̂2

H(ch) halts when it is triggered the first time
after ~cj−1 has been published. 4

We modify π̂2
H(ch) in such a way that the point when the honest voters

are supposed to pick their candidates is postponed to the point when the
honest mix server is triggered to mix its input. Game 2 and Game 3 are
perfectly indistinguishable as stated in Claim 5.

Game 3. For Game 3, we modify π̂2
H(ch) in the following way in order to

obtain π̂3
H(ch). Apart from the modifications below, π̂2

H(ch) and π̂3
H(ch) are

identical.
Ballot creation (simulated): Let Vi be an arbitrary honest voter. In con-

trast to π̂2
H(ch), π̂3

H(ch) does not pick a choice when creating the ballot αi0 and
therefore does not encrypt the choice under the public keys pknservers

, . . . , pkj+1

to obtain αij. Instead, π̂3
H(ch) encrypts 0ηj under the first j public keys

pkj, pkj−1, . . . , pk1 in reverse order to build and publish the fake ballot αi0 for
the voter Vi as in π̂2

H(ch). The pair (αij−1,Vi) is logged by π̂3
H(ch).

Honest mixing (simulated): Let ~cj−1 be the input to the (simulated)
honest mix server Mj (from the adversary’s point of view). For all voters
Vi whose associated ciphertext αij−1 is in ~cj−1, π̂3

H(ch) picks a choice (either
ch or according to µ, respectively) and encrypts it under the public keys
pknservers

, . . . , pkj+1 to obtain αij. Afterwards π̂3
H(ch) adds αij to the output ~cj

(which is supposed to fake the output of Mj). Apart from this, π̂3
H(ch) follows

π̂2
H(ch). 4

The only difference between Game 3 and Game 4 is that the simula-
tor invokes the ideal voting protocol Ivoting(fsElect, nvoters, n

honest
voters − k, µ) with

nhonest
voters −k honest voters (see Section 2.5.2) in order to receive nhonest

voters −k honest
choices including the choice of the voter under observation. The simulator
receives these choices in a completely random order and as plaintexts. If nec-
essary, the simulator generates remaining choices itself. Then it continues as
before. As stated in Claim 6 both games are perfectly indistinguishable.
Additionally, and this is the main idea of the proof, the advantage of the ad-

164

versary to tell what the voter under observation voted for is bounded by the
privacy level δideal

(nvoters,nhonest
voters−k,µ)

(fsElect) of the ideal voting protocol. To see this,

assume that the adversary also controlled the simulator without the ideal
voting protocol for nhonest

voters − k honest voters. In this case, the adversary’s
advantage is obviously bounded by δideal

(nvoters,nhonest
voters−k,µ)

(fsElect). This is Claim 7.

Game 4. π̂4
H(ch) is identical to π̂3

H(ch) except for the simulation of the
honest mix server Mj. In the honest mixing phase the process π̂4

H(ch) (which
is now independent of ch) uses the ideal voting protocol (which now depends
on ch) to generate the choices of the first nhonest

voters − k − 1 honest voters plus
the voter under observation (as described below).

Honest mixing (simulated): Let ~cj−1 be the input to the (simulated)
honest mix server Mj. Note that, according to Game 2, π̂3

H(ch) halts if ~cj−1

contains less that nhonest
voters −k ciphertexts associated to the honest voters. This

is done in π̂4
H(ch) as well. Otherwise, at the beginning of the honest mixing

phase, π̂4
H(ch) triggers the ideal voting protocol Ivoting(fsElect, nvoters, n

honest
voters −

k, µ) (see Section 2.5.2); we implicitly compose the program of the observer
in the ideal voting protocol with the adversary πA. The ideal voting protocol
then outputs the list of permutated choices (as plaintexts) that have been
chosen by nhonest

voters − k − 1 honest voters plus the voter under observation
(inside the ideal voting protocol and independently of π̂4

H(ch)). Now, π̂4
H(ch)

counts the number κ of ciphertexts αij−1 associated to the honest voters in
the input~cj−1 of the (simulated) honest mix server Mj. If κ−(nhonest

voters −k) > 0,
then π̂4

H(ch) picks κ − (nhonest
voters − k) candidates according to µ. Afterwards,

π̂4
H(ch) has a list of κ plaintexts: nhonest

voters − k from the ideal functionality and
κ − (nhonest

voters − k) generated by itself. Then π̂4
H(ch) encrypts each of these

vote-nonce pairs under the public keys pknservers
, . . . , pkj+1 as in the previous

games. Afterwards, it adds them to the output ~cj. The rest of π̂4
H(ch) is

identical to π̂3
H(ch). 4

We prove that each game is computationally (or even perfectly) indis-
tinguishable of the previous one (if any). We will also prove that in the
final game (Game 4), for every adversary πA the advantage to correctly tell
the choice the voter under observation voted for is bounded by the privacy
level of the ideal voting protocol for nhonest

voters − k honest voters. This result in
combination with the indistinguishability of all games yields Theorem 4.

Claim 1. Game 0 and Game 1 are computationally indistinguishable, i.e.,
we have that ∣∣Pr[(π̂0

H(ch)‖πA)(`) 7→ 1]− Pr[(π̂1
H(ch)‖πA)(`) 7→ 1]

∣∣ (C.3)

is negligible as a function of `.

165

Proof. We prove that, if πA can distinguish between Game 0 and Game 1
for some choice ch, then there exists an attacker πA′ who can break the
IND-CCA2-security of the public-key encryption scheme by using πA (see
Section A.1). So, let us assume that the difference (C.3) is non-negligible.

Let π̂C(b) = π̂C(pkj, skj, b) be a (CCA2-) challenger as in Section A.1,
meaning that π̂C(b) outputs a ciphertext of xb under pkj when given two
vectors (x0, x1). In what follows, we will construct an attacker πA′ on the
public-key encryption scheme with key pair (pkj, skj) such that for the ad-
versary πA the process πA‖πA′‖π̂C(b) is identical to π̂0

H(ch)‖πA, if b = 0, and
to π̂1

H(ch)‖πA, if b = 1.
The process πA′ is defined to be identical to π̂1

H(ch) until the encryption
of the ciphertexts αij under the public key pkj. This step is modified in
the following way. The attacker πA′ sends two vectors to the challenger
π̂C(b): the first vector contains the ciphertexts αij of all honest voters and
the second vector contains 0ηj at each position. Then, using the public key
pkj, the challenger π̂C(b) encrypts and returns the first vector, if b = 0, and
the second vector, if b = 1. Afterwards and until the end, πA′ follows the
process π̂1

H(ch) with one exception explained below. In particular, this means
that πA′ encrypts the vector of ciphertexts it has received from the challenger
under the remaining public keys pkj−1, ..., pk1. Also, for each honest voter
Vi whose associated ciphertext αij−1 is in ~cj−1, πA′ adds αij to the output ~cj.
The only difference between π̂1

H(ch) and πA′ at this point is that whenever
π̂1
H(ch) would decrypt a ciphertext c (where c is in the input to Mj but it

is none of the logged αij−1), πA′ obtains the decryption of c by querying the
decryption oracle of the challenger.

Observe that for b = 0, the ciphertext αij−1 is an encryption of αij under
pkj as in Game 0, and for b = 1, the ciphertext αij−1 is an encryption of 0ηj

under pkj as in Game 1. Also note that in neither game, and hence, also not
in πA‖πA′‖π̂C(b) honest voters blame the honest mix server Mj since if αij−1

is in the input of Mj, Mj adds αij to its output. In particular, honest voters
do not need to be able to provide evidence for the misbehavior of Mj, which
in πA‖πA′‖π̂C(b) they would not be able to do since encryption is done by the
challenger. Now, it is straightforward to see that from the point of view of
the adversary πA the process πA‖πA′‖π̂C(b) is identical to Game 0, if b = 0,
and to Game 1, if b = 1.

By assumption, the adversary πA can distinguish between Game 0 and
Game 1. Defining that πA′ outputs 0, if πA outputs 1, and 1, otherwise,
the attacker πA′ has a non-negligible advantage in the IND-CCA2-security
game with the challenger π̂C(b) (see Section A.1). Therefore, the IND-CCA2-
security of the public-key encryption scheme is broken, in contradiction to
the assumption that the public-key encryption scheme is IND-CCA2-secure.

166

Therefore, the claim follows.

Claim 2. The adversary πA is k-risk-avoiding in Game 1 (meaning that with
overwhelming probability a run of the system does not stop before ~cnservers is
published and there are at least nhonest

voters − k vote-nonce pairs in ~cnhonest
voters

chosen
by honest voters).

Proof. By assumption, πA is k-risk-avoiding in Game 0. Now, the claim
follows immediately from the proof of Claim 1: one could modify πA′ in such
a way that it checks whether γ(k, ϕ) is satisfied or not (which πA′ can do
efficiently).

Claim 3. The probability that in a run of the process π̂1
H(ch)‖πA, there are

at least nhonest
voters −k ciphertexts associated to the honest voters in the input ~cj−1

of the (simulated) honest mix server Mj is overwhelming.

Proof. From Claim 2 we know that with overwhelming probability in a run
of π̂1

H(ch)‖πA there are at least nhonest
voters − k vote-nonce pairs in ~cnservers that

have been chosen by different honest voters. We will now show that the
probability (over all possible runs of the process π̂1

H(ch)‖πA) that there are
less than nhonest

voters − k ciphertexts associated to the honest voters in the input
~cj−1 of the (simulated) honest mix server Mj is negligible as a function of the
security parameter `.

Let r be an arbitrary run of the system π̂1
H(ch)‖πA in which there are at

least nhonest
voters −k vote-nonce pairs of honest voters in ~cnservers while there are less

than nhonest
voters −k ciphertexts associated to the honest voters in the input of the

honest mix server ~cj−1. Then there exists an honest voter π̂Vi
(or π̂Vobs

(ch))
whose associated ciphertext αij−1 is not in ~cj−1 while her vote-nonce pair
(candi, code

voter
i) is in the final output ~cnservers . Since αij−1 is not in ~cj−1, the

process π̂1
H(ch) does not add αij to its output ~cj. By the definition of Game 1,

it is straightforward to see that therefore, the adversary πA does not receive
any information about the vote-nonce pair (candi, code

voter
i) throughout the

whole run. That is, the run is independent of codevoteri .
Let π̂Vi

be an arbitrary honest voter. We split up the set Ω of random bit
strings used to determine the runs of π̂1

H(ch)‖πA into Ωi which consists of all
random coins used to determine the nonce of π̂Vi

and Ω′i which consists of the
remaining random coins. This means that Ω can be represented as Ωi × Ω′i.
Now, let Ei be the event that αij−1 is not in ~cj−1 while the vote-nonce pair
of π̂Vi

is in the final output ~cnservers (recall that πA is k-risk-avoiding and thus
~cnservers is published).

Let r be a run in Ei and let ω ∈ Ω be the random coins of this run. Let
ωcodevoter ∈ Ωi be the random coins used to determine the nonce of π̂Vi

in r

167

and ω′ ∈ Ω′i be the remaining random coins. This means that 〈ωcodevoter , ω
′〉

represents ω as described above. Note that by ω′ up to and including the
publication of the result, the view of the adversary is completely determined
and independent of ωcodevoter . Thus we have that

Pr [Ei | ω′] ≤
nvoters

2`
. (C.4)

(Recall that nvoters is the number of voters and ` is the size of the verification
codes of honest voters.) Therefore, we know that

Pr [Ei] =
∑
ω′∈Ω′i

Pr [Ei | ω′] · Pr [ω′] =
∑
ω′∈Ω′i

nvoters

2`
· Pr [ω′] =

nvoters

2`
(C.5)

holds true.
Now, let E be the event that there are less than nhonest

voters − k ciphertexts
associated to the honest voters in the input~cj−1 of the (simulated) honest mix
server Mj in the process π̂1

H(ch)‖πA. Let E ′ be the event that an adversary
in a run of π̂1

H(ch)‖πA is k-risk-avoiding. Since the probability for E ′ is
overwhelming, it suffices to show that the probability of E ∩E ′ is negligible.
From what we have shown above, we can conclude that

Pr [E ∩ E ′] = Pr

nhonest
voters⋃
i=1

Ei

 ≤ nhonest
voters∑
i=1

Pr [Ei] =
nvoters · nhonest

voters

2`
. (C.6)

Hence, Pr [E ∩ E ′] is negligible.

Claim 4. Game 1 and Game 2 are computationally indistinguishable, i.e.,
for each choice ch we have that∣∣Pr[(π̂1

H(ch)‖πA)(`) 7→ 1]− Pr[(π̂2
H(ch)‖πA)(`) 7→ 1]

∣∣ (C.7)

is negligible as a function of `.

Proof. This follows immediately from Claim 3.

Claim 5. Game 2 and Game 3 are perfectly indistinguishable, i.e., for each
choice ch we have that∣∣Pr[(π̂2

H(ch)‖πA)(`) 7→ 1]− Pr[(π̂3
H(ch)‖πA)(`) 7→ 1]

∣∣ = 0 (C.8)

holds true.

168

Proof. The postponed construction of all αij in Game 3 has no impact on
the information the adversary can derive throughout the game because the
ciphertexts αij in Game 2 are not output before the honest mixing phase.
Therefore, the claim holds true.

Claim 6. Game 3 and Game 4 are perfectly indistinguishable, i.e., for each
choice ch we have that∣∣Pr[(π̂3

H(ch)‖πA)(`) 7→ 1]− Pr[(π̂4
H(ch)‖πA)(`) 7→ 1]

∣∣ = 0 (C.9)

holds true.

Proof. The only difference between Game 3 and Game 4 is the fact that in
Game 4 nhonest

voters − k honest choices are not generated by π̂4
H(ch) but by the

ideal voting protocol. But this is done in the same way. So the two games
are essentially identical.

Claim 7. For Game 4, we have that∣∣Pr[(π̂4
H(ch0)‖πA)(`) 7→ 1]− Pr[(π̂4

H(ch1)‖πA)(`) 7→ 1]
∣∣

is bounded by δideal
(nvoters,nhonest

voters−k,µ)
(fsElect) for all choices ch0 and ch1 (ch0, ch1 6=

abstain).

Proof. This follows immediately from Theorem 1 (privacy level of the ideal
voting protocol).

From these claims, Theorem 4 follows immediately.

C.3 Verifiability and Accountability Proof for

Ordinos

Lemma 3 (Fairness). Under the assumptions stated at the beginning of Sec-
tion 4.4 and the mentioned judging procedure run by the judge J, the judge J
is computationally fair in the protocol POrdinos(nvoters, ntrustees, µ, pverify, ftally).

Proving fairness follows immediately from the correctness of the encryp-
tion scheme, the signature scheme, the MPC protocol, and all the NIZKPs
invoked.

Lemma 4 (Completeness). Under the assumptions stated at the beginning
of Section 4.4 and the mentioned judging procedure run by the judge J, for
POrdinos(nvoters, ntrustees, µ, pverify, ftally) we have that

Pr[π(1`) 7→ ¬(J : Φk)] ≤ δk(pverify)

with overwhelming probability as a function of `.

169

Proof. In order to prove the lemma, we have to show that the probabilities

Pr[π(1`) 7→ (χi ∧ ¬dis(Vi) ∧ ¬dis(AS))],

Pr[π(1`) 7→ (χ′i ∧ ¬dis(Vi) ∧ ¬dis(AS))], and

Pr[π(1`) 7→ (¬γ(k, ϕ) ∧ ¬χ ∧ ¬dis(AS) ∧ ¬dis(T1) ∧ . . . ∧ ¬dis(Tntrustees))]

are δk(pverify)-bounded for every i ∈ {1, . . . , nvoters}.
The first two probabilities are equal to 0. In fact, if a voter Vi complains

in an authenticated way that she did not receive a valid acknowledgement
although she submitted a valid ballot (i.e., when χi holds true), or if Vi
complains in an authenticated way that she abstained from voting although
her name appears in a ballot in ~b (i.e., when χ′i holds true), then, by the
definition of the honest programs, the honest bulletin board B publishes the
respective complaint and the judge J outputs the verdict dis(Vi) ∨ dis(AS).

To complete the proof, we need to show that the probability of the event

X = ¬γ(k, ϕ) ∧ ¬χ ∧ ¬IB

is δk(pverify)-bounded as a function of `, where

IB = dis(AS) ∨ dis(T1) ∨ . . . ∨ dis(Tntrustees).

In other words, ¬IB describes the event that none of the trustees T or the
authentication server AS are individually blamed by the judge J.

Let us first consider the case that an election outcome res is announced.
This implies that all NIZKPs that are supposed to be published have in fact
been published.

Now, if ¬IB holds true, then all NIZKPs πKeyShareGen
k published by the

trustees Tk are valid. Thus, by the computational completeness of the
NIZKPs, it follows that for all k ∈ {1, . . . , ntrustees} the published public key
share pkk is valid, i.e., there exists a secret key share skk such that (pkk, skk)
is a valid public/secret key pair.

Furthermore, if ¬IB holds true, then for all ballots bi ∈ ~b published by AS
the NIZKPs πEnc

i are valid (which are supposed to prove that each voter Vi
votes for exactly one possible choice). Thus, by the computational complete-

ness of the NIZKPs, it follows that for all bi ∈ ~b containing a ciphertext vector
(ci,1, . . . , ci,ncand

), there exist plaintexts mreal
i,1 , . . . ,m

real
i,ncand

such that ci,j encrypts
mreal
i,j under pk for all j ∈ {1, . . . , ncand} and that (mreal

i,1 , . . . ,m
real
i,ncand

) ∈ C holds
true (recall that C ⊆ {0, . . . , nvpc}ncand is the set of possible choices).

Since we have assumed that the MPC protocol PMPC provides individual
accountability for the goal γMPC(ϕ), it follows that if ¬IB holds true, then

170

the overall NIZKP πMPC of the MPC protocol, which has been run among
the trustees, is valid. Recall that the goal γMPC(ϕ) contains all runs in which
for the input to PMPC, which equals

Enc

(
nballots∑
i=1

mreal
i,1

)
, . . . ,Enc

(
nballots∑
i=1

mreal
i,ncand

)
in this case, it is guaranteed that the output

ftally

(
nballots∑
i=1

mreal
i,1 , . . . ,

nballots∑
i=1

mreal
i,ncand

)

of PMPC, and hence of POrdinos, is correct (with overwhelming probability as
a function of `).

Let ch1, . . . , chnhonest
voters

be the actual choices made by the honest voters. Now,
if the goal γ(k, ϕ) is not met, then ϕ holds true so that, in particular, the
bulletin board B is honest. Thus, for all possible valid ch′1, . . . , ch

′
ndishonest
voters

made by the dishonest voters, we have that the distance d, as measured
in Section 2.3.2, between the vector (ch1, . . . , chnhonest

voters
, ch′1, . . . , ch

′
ndishonest
voters

) and

the vector (chreal1 , . . . , chrealnballots
) is at least k + 1. In other words, the authen-

tication server AS receives the (encrypted) honest input (ch1, . . . , chnhonest
voters

)

together with a possibly dishonest input (ch′1, . . . , ch
′
ndishonest
voters

) and outputs a

list of ballots that encrypts (chreal1 , . . . , chrealnballots
) which differs from the input

on at least dk+1
2
e positions. Since we quantify existentially over all possible

dishonest inputs and nballots ≤ nhonest
voters +ndishonest

voters , we can conclude that at least
dk+1

2
e honest choices have been dropped or manipulated.

Recall that we want to prove that the probability of the event

X = ¬γ(k, ϕ) ∧ ¬χ ∧ ¬IB

is δk(pverify)-bounded as a function of `. So far, we have analyzed the event
¬γ(k, ϕ) ∧ ¬IB and concluded that, with overwhelming probability, the au-
thentication server AS has dropped or manipulated at least dk+1

2
e honest in-

puts. Under the assumption that all honest voters perform their verification
procedure independently from each other, the probability that none of the be-

trayed honest voters complains is bounded by δk(pverify) = (1− pverify)d
k+1
2
e.

Thus, we can conclude that the probability of the event X is δk(pverify)-
bounded as a function of `.

In the case that no election outcome res is announced, the judging pro-
cedure (J1) ensures that the authentication server AS or one of the trustees
Tk are individually blamed.

171

C.4 Privacy Proof for Ordinos

Overview of the proof. Recall that, in order to prove the theorem for the
protocol Ordinos with nvoters voters, ntrustees trustees, voting distribution µ,
verification rate pverify ∈ [0, 1], and voter under observation Vobs, we have to
show that

|Pr[(π̂Vobs
(ch0)‖π∗) 7→ 1]− Pr[(π̂Vobs

(ch1)‖π∗) 7→ 1]|

is δideal
(nvoters,nhonest

voters−k,µ)
(fres)-bounded as a function of the security parameter `, for

all ch0, ch1 ∈ C (ch0, ch1 6= abstain), all programs π∗ of the remaining parties
such that at least nhonest

voters voters are honest in π∗ (excluding the voter under
observation Vobs), such that at most t − 1 trustees are dishonest in π∗, and
such that the adversary (the dishonest parties in π∗) is k-risk-avoiding.

We can split up the composition π∗ in its honest and its (potentially)
dishonest part. Let HV be the set of all honest voters (without the voter
under observation) and π̂HV be the composition of their honest programs.
Recall that the judge J, the scheduler S, the bulletin board B, the voting
authority Auth, and nhonest

trustees = ntrustees−t+1 out of ntrustees trustees are honest
(w.l.o.g., we assume that the first nhonest

trustees trustees are honest). Therefore, the
honest part, which we denote by

π̂H = π̂J‖π̂Auth‖π̂B‖π̂S‖π̂T1‖ . . . ‖π̂Tnhonest
trustees

‖π̂HV,

consists of the honest programs π̂J, π̂Auth, π̂B, π̂S, π̂Tk
, π̂HV of the judge J, the

voting authority Auth, the bulletin board B, the scheduler S, the trustees
Tk, and the honest voters HV, respectively. By π̂H(ch) we will denote the
composition of all honest programs including the program of the voter un-
der observation Vobs, i.e., π̂H(ch) = π̂H‖π̂Vobs

(ch). All remaining parties are
subsumed by the adversarial process πA. This means that we can write
π̂Vobs

(ch)‖π∗ as π̂H(ch)‖πA. Recall that, by assumption, the adversary πA is
k-risk-avoiding.

In order to prove the result, we use a sequence of games. We fix ch ∈ C
and start with Game 0 which is simply the process π̂H(ch)‖πA. Step by step,
we transform Game 0 into Game 7 which is the composition π̂7

H(ch)‖πA for
some process π̂7

H(ch) and the same adversarial process πA. Game 7 will be
proven indistinguishable from Game 0 from the adversary’s point of view,
which means that∣∣Pr[(π̂0

H(ch)‖πA) 7→ 1]− Pr[(π̂7
H(ch)‖πA) 7→ 1]

∣∣
is negligible for a fixed ch ∈ C (as a function of the security parameter).
On the other hand, it will be straightforward to show that in Game 7 for

172

arbitrary ch0, ch1 ∈ C \ {abstain}, the distance∣∣Pr[(π̂7
H(ch0)‖πA) 7→ 1]− Pr[(π̂7

H(ch1)‖πA) 7→ 1]
∣∣

is bounded by δideal
(nvoters,nhonest

voters−k,µ)
(fres) because π̂7

H(ch0) and π̂7
H(ch0) use the ideal

voting protocol for nhonest
voters − k honest voters. Using the triangle inequality,

we can therefore deduce that

|Pr[(π̂H(ch0)‖πA) 7→ 1]− Pr[(π̂H(ch1)‖πA) 7→ 1]|

is δideal
(nvoters,nhonest

voters−k,µ)
(fres)-bounded for all ch0, ch1 ∈ C (as a function of the

security parameter).

Game 0. In what follows, we write π̂0
H(ch) for π̂H(ch) and consider π̂0

H(ch)
as one atomic process (one program) and not as a composition of processes.2

Now, Game 0 is the process π̂0
H(ch)‖πA. 4

In the next step, the scheduler S modifies the CRSs for the NIZKPs used
by the dishonest trustees for proving knowledge and correctness of the key
shares in such a way that he can later extract all of these secret key shares.

Game 1. For Game 1, we modify π̂0
H(ch) in the following way to obtain

π̂1
H(ch). Apart from the modifications below, π̂0

H(ch) and π̂1
H(ch) are identical.

Modified CRSs for πKeyShareGen
k . Instead of using the (honest) setup algorithm

to generate common reference strings σKeyShareGen
k for NIZKPs of knowledge

and correctness of the secret key shares skk corresponding to the published
public key shares pkk of the dishonest trustees, the modified scheduler (as a
subprocess of π̂1

H(ch)) uses (the first component of) an extractor algorithm
(that exists by the computational knowledge extraction property) to gen-
erate σKeyShareGen

k (which is given to the adversary) along with a trapdoor

τKeyShareGenk . 4
In the next step, the scheduler S modifies the CRSs for the NIZKPs

used by the honest trustees for proving knowledge and correctness of the
key shares in such a way that he can later simulate these NIZKPs without
actually knowing the secret key shares.

Game 2. For Game 2, we modify π̂1
H(ch) in the following way to obtain

π̂2
H(ch). Apart from the modifications below, π̂1

H(ch) and π̂2
H(ch) are identical.

Modified CRSs for πKeyShareGen
k . Instead of using the (honest) setup algorithm

to generate common reference strings σKeyShareGen
k for NIZKPs of knowledge

and correctness of the secret key shares skk corresponding to the published
public key shares pkk of the honest trustees, the modified scheduler (as a
subprocess of π̂1

H(ch)) uses (the first component of) an extractor algorithm

2This is w.l.o.g. since every (sub-)process can be simulated by a single program.

173

(that exists by the computational knowledge extraction property) to gen-
erate σKeyShareGen

k (which is given to the adversary) along with a trapdoor

τKeyShareGenk . 4
In the next step, the scheduler S modifies the CRSs for the NIZKPs used

by the dishonest voters for proving knowledge and correctness of their ballots
in such a way that he can later extract these choices.

Game 3. For Game 3, we modify π̂2
H(ch) in the following way to obtain

π̂3
H(ch). Apart from the modifications below, π̂2

H(ch) and π̂3
H(ch) are identical.

Modified CRSs for πEnc
i . Instead of using the (honest) setup algorithm to

generate common reference strings σEnc
i for NIZKPs of knowledge and cor-

rectness of chi to be used by the dishonest voters Vi, the modified scheduler
(as a subprocess of π̂3

H(ch)) uses (the first component of) an extractor algo-
rithm (that exists by the computational knowledge extraction property) to
generate σEnc

i (which is given to the adversary) along with a trapdoor τEnci .
4

In the next step, the scheduler S modifies the CRSs for the NIZKPs used
by the honest voters for proving knowledge and correctness of their ballots
in such a way that he can later simulate these NIZKPs without actually
knowing the honest choices.

Game 4. For Game 4, we modify π̂3
H(ch) in the following way to obtain

π̂4
H(ch). Apart from the modifications below, π̂3

H(ch) and π̂4
H(ch) are identical.

Modified CRSs for πEnc
i . Instead of using the (honest) setup algorithm to

generate common reference strings σEnc
i for NIZKPs of knowledge and cor-

rectness of chi to be used by the honest voters Vi, the modified scheduler (as
a subprocess of π̂3

H(ch)) uses a simulator algorithm (that exists by the com-
putational zero-knowledge property) to generate σEnc

i along with a trapdoor
τEnci . 4

In the next step, we exploit the fact that the adversary is k-risk-avoiding
which means that the adversary does not manipulate or drop more than
k honest votes unless the voting protocol aborts before the final result is
published. For Ordinos, this leads to the situation that the adversary can
only manipulate or drop honest votes before the tallying has started because
the tallying procedure itself provides perfect verifiability.

Game 5. For Game 5, we modify π̂4
H(ch) in the following way to obtain

π̂5
H(ch). Apart from the modifications below, π̂4

H(ch) and π̂5
H(ch) are identical.

The process π̂5
H(ch) halts if there are less than nhonest

voters −k ballots submitted
by the honest voters in the list of ballots being output by the authentication
server AS. In this case, π̂5

H(ch) halts if it is triggered the first time after the
ballots have been published. 4

174

In the next step, we will exploit the fact that the MPC protocol in Or-
dinos provides privacy so that the honest part of the voting protocol can
“internally” replace the real MPC protocol with the ideal one and simulate
it towards the adversary. In order to do this, the ideal MPC protocol requires
the secret key shares of the dishonest trustees which can be extracted from
the dishonest trustees’ NIZKPs with the trapdoors that have been introduced
in Game 1. Furthermore, the ideal MPC protocol does not reveal the secret
key shares of the honest trustees so that the simulator has to simulate their
NIZKPs without knowing the secret key shares. This can be done with the
trapdoors introduced in Game 2.

Game 6. For Game 6, we modify π̂5
H(ch) in the following way to obtain

π̂6
H(ch). Apart from the modifications below, π̂5

H(ch) and π̂6
H(ch) are identical.

Simulating key generation. Each time, an honest trustee Tk is triggered
to generate its key shares (pk, sk), the simulator does the following. Instead
of letting Tk run KeyShareGen, the simulator invokes the ideal MPC protocol
IMPC for generating the public/secret key shares (pkk, skk) and outputting
the public key share pk (recall that the secret key share sk is not revealed
by IMPC). Then, the simulator uses the trapdoor τKeyShareGenk from Game 2

to generate a simulated NIZKP πKeyShareGen
k (without actually knowing the

secret key share skk).
Extracting dishonest key shares. After the authentication server has pub-

lished the list of ballots, the simulator uses the trapdoors τKeyShareGenk from
Game 1 to extract the secret key shares skk of the dishonest trustees Tk. The
simulator forwards these secret key shares to the ideal MPC protocol IMPC.

Secure tallying. The simulator simulates the computing phase of the real
MPC protocol PMPC with the ideal MPC protocol IMPC. 4

In the next and final step, the complete Ordinos protocol will be replaced
by the ideal voting protocol. In order to do this, the ideal voting protocol
requires the choices of the dishonest voters which can be extracted from the
dishonest voters’ NIZKPs with the trapdoors that have been introduced in
Game 3. Furthermore, the ideal voting protocol does not reveal the choices of
the honest voters so that the simulator has to simulate their NIZKPs without
knowing the choices. This can be done with the trapdoors introduced in
Game 4.

Game 7. For Game 7, we modify π̂6
H(ch) in the following way to obtain

π̂7
H(ch). Apart from the modifications below, π̂6

H(ch) and π̂7
H(ch) are identical.

Simulating ballot generation. Each time, an honest voter Vi (including
the voter under observation) is triggered to pick chi according to µ and create
her ballot bi, the simulator does the following. The simulator sets chi = 0ncand

and encrypts it to obtain ~ci. Then, the simulator uses the trapdoor τEnci from

175

Game 4 to generate a simulated NIZKP πEnc
i .

Extracting dishonest choices. After the authentication server has pub-
lished the list of ballots, the simulator uses the trapdoors τEnci from Game 1
to extract chi of each published ballot bi that belongs to a dishonest voter
Vi.

Secure tallying. The simulator replaces the ideal MPC protocol IMPC with
the ideal voting protocol Ivoting(fres, µ, nvoters, n

honest
voters −k′) where the nhonest

voters −k′
is the number of ballots submitted in the list of ballots being output by the
authentication server AS. Let Ivoting(fres, µ, nvoters, n

honest
voters −k′)(ch) denote the

protocol Ivoting(fres, µ, nvoters, n
honest
voters − k′) in which the choice nhonest

voters − k′ + 1
is set as ch. Now, the simulator first triggers Ivoting(fres, µ, nvoters, n

honest
voters −

k′)(ch) in order to (internally) determine the choices of the nhonest
voters −k′ honest

votes. Then, the simulator triggers Ivoting(fres, µ, nvoters, n
honest
voters − k′)(ch) to

set the choices of the dishonest voters as extracted above. The output of
Ivoting(fres, µ, nvoters, n

honest
voters − k′)(ch) will be the output of the tallying phase.

4

Lemma 5. For all i ∈ {0, 1, 2, 3}, Game i and Game i+ 1 are computation-
ally indistinguishable, i.e., we have that∣∣Pr[(π̂iH(ch)‖πA) 7→ 1]− Pr[(π̂i+1

H (ch)‖πA) 7→ 1]
∣∣

is negligible (as a function of the security parameter).

Proof. This follows from the fact that πKeyShareGen and πEnc are proofs of
knowledge (recall Section A.3 for details).

Lemma 6. For all i ∈ {1, 2, 3, 4}, the adversary is k-risk-avoiding in Game
i (meaning that with overwhelming probability a run of the protocol does not
stop before the final result is published and there are at least nhonest

voters −k choices
by honest voters in the final result).

Proof. If the adversary was not k-risk-avoiding in Game i + 1 for some
i ∈ {0, 1, 2, 3}, it would be possible to construct a ppt algorithm that distin-
guishes between Game i and Game i+1. This would contradict the previous
Lemma.

Lemma 7. The probability that in a run of the process π̂4
H(ch)‖πA, there are

at least nhonest
voters − k ciphertexts associated to the honest voters in the input of

the tallying phase is overwhelming.

Proof. Assume that less than nhonest
voters − k ciphertexts associated to the hon-

est voters were in the input of the MPC protocol in Game 4. Due to the

176

correctness of the MPC protocol, the output of the MPC protocol would be
different from any election result in which at most k honest choices have been
manipulated. This contradicts the fact that the adversary is k-risk-avoiding
in Game 4, as we have seen in the previous Lemma.

Lemma 8. Game 4 and Game 5 are computationally indistinguishable, i.e.,
we have that ∣∣Pr[(π̂4

H(ch)‖πA) 7→ 1]− Pr[(π̂5
H(ch)‖πA) 7→ 1]

∣∣
is negligible (as a function of the security parameter).

Proof. Recall that Game 5 halts if there are less than nhonest
voters − k ballots

submitted by the honest voters in the list of ballots being output by the
authentication server AS. Since this probability is negligible, as we have seen
in the previous Lemma, Game 4 and Game 5 are indistinguishable.

Lemma 9. Game 5 and Game 6 are computationally indistinguishable, i.e.,
we have that ∣∣Pr[(π̂5

H(ch)‖πA) 7→ 1]− Pr[(π̂6
H(ch)‖πA) 7→ 1]

∣∣
is negligible (as a function of the security parameter).

Proof. This follows from the fact that πKeyShareGen is a proof of knowledge and
that the MPC protocol realizes the ideal MPC protocol.

Lemma 10. Game 6 and Game 7 are perfectly indistinguishable, i.e., we
have that ∣∣Pr[(π̂6

H(ch)‖πA) 7→ 1]− Pr[(π̂7
H(ch)‖πA) 7→ 1]

∣∣
is negligible (as a function of the security parameter).

Proof. This follows from the fact that πEnc is a proof of knowledge and that
the remaining difference between Game 6 and Game 7 is purely syntactical.

177

Bibliography

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient
computation modulo a shared secret with application to the gen-
eration of shared safe-prime products. In Advances in Cryptology
- CRYPTO 2002, 22nd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, pages 417–432, 2002.

[ACW13] Mathilde Arnaud, Véronique Cortier, and Cyrille Wiedling.
Analysis of an electronic boardroom voting system. In E-
Voting and Identify - 4th International Conference, Vote-ID
2013, Guildford, UK, July 17-19, 2013. Proceedings, pages 109–
126, 2013.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In Proceed-
ings of the 17th USENIX Security Symposium, July 28-August
1, 2008, San Jose, CA, USA, pages 335–348, 2008.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names,
and secure communication. In Conference Record of POPL 2001:
The 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, London, UK, January 17-19, 2001,
pages 104–115, 2001.

[AKBW14] Claudia Z. Acemyan, Philip T. Kortum, Michael D. Byrne, and
Dan S. Wallach. Usability of Voter Verifiable, End-to-end Voting
Systems: Baseline Data for Helios, Prêt à Voter, and Scantegrity
II. In 2014 Electronic Voting Technology Workshop/Workshop
on Trustworthy Elections, EVT/WOTE ’14. USENIX Associa-
tion, 2014.

[AL07] Yonatan Aumann and Yehuda Lindell. Security Against Covert
Adversaries: Efficient Protocols for Realistic Adversaries. In

178

Theory of Cryptography, 4th Theory of Cryptography Confer-
ence, TCC 2007, Amsterdam, The Netherlands, February 21-24,
2007, Proceedings, pages 137–156, 2007.

[And11] Andrew Appel. https://freedom-to-tinker.com/blog/

appel/nj-election-cover/, September 13th 2011.

[Ano18] Anonymous. Ordinos: A Verifiable Tally-Hiding E-Voting
System. Technical report, 2018. this report is available at
http://51.68.178.50/ordinos-tr.pdf, the implementation
and detailed benchmarks are available at http://51.68.178.

50/ordinos-implementation.tar.gz.

[ASW00] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair
exchange of digital signatures. IEEE Journal on Selected Areas
in Communications, 18(4):593–610, 2000.

[BCG+15] David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. SoK: A Comprehensive Anal-
ysis of Game-Based Ballot Privacy Definitions. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 499–516, 2015.

[BDO14] Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly
auditable secure multi-party computation. Cryptology ePrint
Archive, Report 2014/075, 2014. http://eprint.iacr.org/.

[Ben86] Josh D. Benaloh. Improving Privacy in Cryptographic Elections
(technical report). Technical report, 1986.

[Ben87] Josh D. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis,
1987.

[Ben06] Josh Benaloh. Simple verifiable elections. In Dan S. Wallach and
Ronald L. Rivest, editors, 2006 USENIX/ACCURATE Elec-
tronic Voting Technology Workshop, EVT’06, Vancouver, BC,
Canada, August 1, 2006. USENIX Association, 2006.

[Bon12] Joseph Bonneau. The Science of Guessing: Analyzing an
Anonymized Corpus of 70 Million Passwords. In IEEE Sympo-
sium on Security and Privacy, SP 2012, 21-23 May 2012, San
Francisco, California, USA, pages 538–552, 2012.

179

https://freedom-to-tinker.com/blog/appel/nj-election-cover/
https://freedom-to-tinker.com/blog/appel/nj-election-cover/
http://51.68.178.50/ordinos-tr.pdf
http://51.68.178.50/ordinos-implementation.tar.gz
http://51.68.178.50/ordinos-implementation.tar.gz
http://eprint.iacr.org/

[BPA12] Joseph Bonneau, Sören Preibusch, and Ross Anderson. A birth-
day present every eleven wallets? The security of customer-
chosen banking PINs. In Financial Cryptography and Data Se-
curity - 16th International Conference, FC 2012, Kralendijk,
Bonaire, Februray 27-March 2, 2012, Revised Selected Papers,
pages 25–40. 2012.

[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and
David Galindo. Beleniosrf: A non-interactive receipt-free elec-
tronic voting scheme. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vi-
enna, Austria, October 24-28, 2016, pages 1614–1625, 2016.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers.
Civitas: Toward a Secure Voting System. In 2008 IEEE Sym-
posium on Security and Privacy (S&P 2008), 18-21 May 2008,
Oakland, California, USA, pages 354–368, 2008.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers.
Proofs of Partial Knowledge and Simplified Design of Witness
Hiding Protocols. In Advances in Cryptology - CRYPTO ’94,
14th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 21-25, 1994, Proceedings, pages
174–187, 1994.

[ÇDSS15] Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas.
Depth optimized efficient homomorphic sorting. In Progress in
Cryptology - LATINCRYPT 2015 - 4th International Confer-
ence on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings, pages
61–80, 2015.

[CEK+15] Véronique Cortier, Fabienne Eigner, Steve Kremer, Matteo Maf-
fei, and Cyrille Wiedling. Type-Based Verification of Electronic
Voting Protocols. In Principles of Security and Trust - 4th Inter-
national Conference, POST 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015, Proceedings, pages 303–
323, 2015.

[CFH+07] Joseph A. Calandrino, Ariel J. Feldman, J. Alex Halderman,
David Wagner, Harlan Yu, and William P. Zeller. Source Code

180

Review of the Diebold Voting System, 2007. Report com-
missioned as part of the California Secretary of State’s Top-
To-Bottom Review of California voting systems. http://www.
eecs.berkeley.edu/~daw/papers/dieboldsrc-ttbr.pdf.

[CFP+10] Benôıt Chevallier-Mames, Pierre-Alain Fouque, David
Pointcheval, Julien Stern, and Jacques Traoré. On Some
Incompatible Properties of Voting Schemes. In Towards Trust-
worthy Elections, New Directions in Electronic Voting, pages
191–199, 2010.

[CGGI14] Véronique Cortier, David Galindo, Stéphane Glondu, and Ma-
lika Izabachène. Election Verifiability for Helios under Weaker
Trust Assumptions. In Computer Security - ESORICS 2014 -
19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II,
pages 327–344, 2014.

[CGK+16a] Véronique Cortier, David Galindo, Ralf Küsters, Johannes
Müller, and Tomasz Truderung. Sok: Verifiability notions for
e-voting protocols. In IEEE Symposium on Security and Pri-
vacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages
779–798, 2016.

[CGK+16b] Véronique Cortier, David Galindo, Ralf Küsters, Johannes
Müller, and Tomasz Truderung. Verifiability Notions for E-
Voting Protocols. IACR Cryptology ePrint Archive, 2016:287,
2016.

[Cha81] David Chaum. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[CPP13] Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election
Verifiability or Ballot Privacy: Do We Need to Choose? In Ja-
son Crampton, Sushil Jajodia, and Keith Mayes, editors, Com-
puter Security - ESORICS 2013 - 18th European Symposium on
Research in Computer Security, Egham, UK, September 9-13,
2013. Proceedings, volume 8134 of Lecture Notes in Computer
Science, pages 481–498. Springer, 2013.

[CPRT18] Chris Culnane, Olivier Pereira, Kim Ramchen, and Vanessa
Teague. Universally Verifiable MPC with Applications to IRV

181

http://www.eecs.berkeley.edu/~daw/papers/dieboldsrc-ttbr.pdf
http://www.eecs.berkeley.edu/~daw/papers/dieboldsrc-ttbr.pdf

Ballot Counting. IACR Cryptology ePrint Archive, 2018:246,
2018.

[CPST18] Sébastien Canard, David Pointcheval, Quentin Santos, and
Jacques Traoré. Practical strategy-resistant privacy-preserving
elections. In Computer Security - 23rd European Symposium
on Research in Computer Security, ESORICS 2018, Barcelona,
Spain, September 3-7, 2018, Proceedings, Part II, pages 331–
349, 2018.

[CRST15] Chris Culnane, Peter Y. A. Ryan, Steve A. Schneider, and
Vanessa Teague. vVote: A Verifiable Voting System. ACM
Trans. Inf. Syst. Secur., 18(1):3:1–3:30, 2015.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing he-
lios: An analysis of ballot secrecy. In Proceedings of the 24th
IEEE Computer Security Foundations Symposium, CSF 2011,
Cernay-la-Ville, France, 27-29 June, 2011, pages 297–311, 2011.

[CS14] Chris Culnane and Steve A. Schneider. A Peered Bulletin Board
for Robust Use in Verifiable Voting Systems. In IEEE 27th
Computer Security Foundations Symposium, CSF 2014, Vienna,
Austria, 19-22 July, 2014, pages 169–183, 2014.

[CW17] Véronique Cortier and Cyrille Wiedling. A formal analysis of
the Norwegian E-voting protocol. Journal of Computer Security,
25(1):21–57, 2017.

[Dan09] Daniel Kane. http://ucsdnews.ucsd.edu/newsrel/science/
08-09ElectronicVoting.asp, August 10th 2009.

[DGK+15] Anupam Datta, Deepak Garg, Dilsun Kirli Kaynar, Divya
Sharma, and Arunesh Sinha. Program actions as actual causes:
A building block for accountability. In IEEE 28th Computer Se-
curity Foundations Symposium, CSF 2015, Verona, Italy, 13-17
July, 2015, pages 261–275, 2015.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-
resistance and receipt-freeness in electronic voting. In 19th IEEE
Computer Security Foundations Workshop, (CSFW-19 2006),
5-7 July 2006, Venice, Italy, pages 28–42, 2006.

182

http://ucsdnews.ucsd.edu/newsrel/science/08-09ElectronicVoting.asp
http://ucsdnews.ucsd.edu/newsrel/science/08-09ElectronicVoting.asp

[DLM82] Richard A. DeMillo, Nancy A. Lynch, and Michael Merritt.
Cryptographic Protocols. In Harry R. Lewis, Barbara B. Si-
mons, Walter A. Burkhard, and Lawrence H. Landweber, edi-
tors, Proceedings of the 14th Annual ACM Symposium on The-
ory of Computing (STOC 1982), pages 383–400. ACM, 1982.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty Computation from Somewhat Homomorphic
Encryption. In Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, pages 643–662, 2012.

[Eps15] Jeremy Epstein. Weakness in Depth: A Voting Machine’s
Demise. IEEE Security & Privacy, 13(3):55–58, 2015.

[FJW11] Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright.
Towards a formal model of accountability. In NSPW 2011, pages
45–56, 2011.

[Gam84] Taher El Gamal. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. In Advances in Cryp-
tology, Proceedings of CRYPTO ’84, Santa Barbara, California,
USA, August 19-22, 1984, Proceedings, pages 10–18, 1984.

[GM15] Gregor Gößler and Daniel Le Métayer. A general framework for
blaming in component-based systems. Sci. Comput. Program.,
113:223–235, 2015.

[GRCC15] Gurchetan S. Grewal, Mark Dermot Ryan, Liqun Chen, and
Michael R. Clarkson. Du-Vote: Remote Electronic Voting with
Untrusted Computers. In CSF 2015, pages 155–169, 2015.

[HRT10] James Heather, Peter Y. A. Ryan, and Vanessa Teague. Pretty
Good Democracy for More Expressive Voting Schemes. In Dim-
itris Gritzalis, Bart Preneel, and Marianthi Theoharidou, edi-
tors, Computer Security - ESORICS 2010, 15th European Sym-
posium on Research in Computer Security, volume 6345 of Lec-
ture Notes in Computer Science, pages 405–423. Springer, 2010.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure Multi-
Party Computation with Identifiable Abort. In CRYPTO 2014,
pages 369–386, 2014.

183

[IT17] The Register Iain Thomson. It took DEF CON hack-
ers minutes to pwn these US voting machines, 2017.
https://www.theregister.co.uk/2017/07/29/us_voting_

machines_hacking/.

[JCJ10] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
resistant electronic elections. In Towards Trustworthy Elections,
New Directions in Electronic Voting, pages 37–63, 2010.

[JRSW04] David Jefferson, Aviel D. Rubin, Barbara Simons, and David
Wagner. Analyzing internet voting security. Communications of
the ACM, Special issue: The problems and potentials of voting
systems, 47(10):59–64, 2004.

[KKL+18] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno
Siim, and Thomas Zacharias. On the Security Properties of
e-Voting Bulletin Boards. In Security and Cryptography for Net-
works - 11th International Conference, SCN 2018, Amalfi, Italy,
September 5-7, 2018, Proceedings, pages 505–523, 2018.

[KKO+11] Fatih Karayumak, Michaela Kauer, Maina M. Olembo, To-
bias Volk, and Melanie Volkamer. User study of the improved
Helios voting system interfaces. In 1st Workshop on Socio-
Technical Aspects in Security and Trust, STAST 2011, Milan,
Italy, September 8, 2011, pages 37–44, 2011.

[KM17] Ralf Küsters and Johannes Müller. Cryptographic Security
Analysis of E-voting Systems: Achievements, Misconceptions,
and Limitations. In Electronic Voting - Second International
Joint Conference, E-Vote-ID 2017, Bregenz, Austria, October
24-27, 2017, Proceedings, pages 21–41, 2017.

[KMST16a] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz
Truderung. sElect: A Lightweight Verifiable Remote Voting
System. In IEEE 29th Computer Security Foundations Sympo-
sium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages
341–354, 2016.

[KMST16b] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz
Truderung. sElect: A Lightweight Verifiable Remote Voting
System. IACR Cryptology ePrint Archive, 2016:438, 2016.

[KMW12] Shahram Khazaei, Tal Moran, and Douglas Wikström. A Mix-
Net from Any CCA2 Secure Cryptosystem. In Xiaoyun Wang

184

https://www.theregister.co.uk/2017/07/29/us_voting_machines_hacking/
https://www.theregister.co.uk/2017/07/29/us_voting_machines_hacking/

and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Proceedings, vol-
ume 7658 of Lecture Notes in Computer Science, pages 607–625.
Springer, 2012.

[KOKV11] Fatih Karayumak, Maina M. Olembo, Michaela Kauer, and
Melanie Volkamer. Usability Analysis of Helios - An Open
Source Verifiable Remote Electronic Voting System. In 2011
Electronic Voting Technology Workshop / Workshop on Trust-
worthy Elections, EVT/WOTE ’11, San Francisco, CA, USA,
August 8-9, 2011, 2011.

[KRS10] Steve Kremer, Mark Ryan, and Ben Smyth. Election Verifiabil-
ity in Electronic Voting Protocols. In Dimitris Gritzalis, Bart
Preneel, and Marianthi Theoharidou, editors, 15th European
Symposium on Research in Computer Security (ESORICS2010),
volume 6345 of Lecture Notes in Computer Science, pages 389–
404. Springer, 2010.

[KT16] Ralf Küsters and Tomasz Truderung. Security Analysis of Re-
Encryption RPC Mix Nets. In IEEE European Symposium on
Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pages 227–242, 2016.

[KTV10a] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-
Based Definition of Coercion-Resistance and Its Applications. In
Proceedings of the 23rd IEEE Computer Security Foundations
Symposium, CSF 2010, Edinburgh, United Kingdom, July 17-
19, 2010, pages 122–136, 2010.

[KTV10b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Account-
ability: Definition and Relationship to Verifiability. In Proceed-
ings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010, pages 526–535. ACM, 2010. Full version available at
http://eprint.iacr.org/2010/236/.

[KTV10c] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Proving
Coercion-Resistance of Scantegrity II. In Information and Com-
munications Security - 12th International Conference, ICICS
2010, Barcelona, Spain, December 15-17, 2010. Proceedings,
pages 281–295, 2010.

185

http://eprint.iacr.org/2010/236/

[KTV11] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifia-
bility, Privacy, and Coercion-Resistance: New Insights from a
Case Study. In 32nd IEEE Symposium on Security and Pri-
vacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA,
pages 538–553, 2011.

[KTV12a] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-
Based Definition of Coercion-Resistance and its Applications.
Journal of Computer Security, 20(6):709–764, 2012.

[KTV12b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Clash At-
tacks on the Verifiability of E-Voting Systems. In IEEE Sympo-
sium on Security and Privacy, SP 2012, 21-23 May 2012, San
Francisco, California, USA, pages 395–409, 2012.

[KTV14] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. For-
mal Analysis of Chaumian Mix Nets with Randomized Partial
Checking. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 343–358,
2014.

[KZZ15a] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang.
DEMOS-2: Scalable E2E Verifiable Elections without Random
Oracles. In CCS 2015, pages 352–363, 2015.

[KZZ15b] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-
to-End Verifiable Elections in the Standard Model. In EURO-
CRYPT 2015, pages 468–498, 2015.

[KZZ17] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. An
Efficient E2E Verifiable E-voting System without Setup As-
sumptions. S&P 2017, 15(3):14–23, 2017.

[Loe14] Loek Essers. http://www.pcworld.com/article/2159260/

software-bug-disrupts-evote-count-in-belgian-election.

html, May 26th 2014.

[LT13] Helger Lipmaa and Tomas Toft. Secure Equality and Greater-
Than Tests with Sublinear Online Complexity. In Automata,
Languages, and Programming - 40th International Colloquium,
ICALP 2013, Proceedings, Part II, pages 645–656, 2013.

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable
Voting with Everlasting Privacy. In Advances in Cryptology -

186

 http://www.pcworld.com/article/2159260/software-bug-disrupts-evote-count-in-belg ian-election.html
 http://www.pcworld.com/article/2159260/software-bug-disrupts-evote-count-in-belg ian-election.html
 http://www.pcworld.com/article/2159260/software-bug-disrupts-evote-count-in-belg ian-election.html

CRYPTO 2006, 26th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 20-24, 2006, Pro-
ceedings, pages 373–392, 2006.

[NFSF14] Stephan Neumann, Christian Feier, Perihan Sahin, and Sebas-
tian Fach. Pretty Understandable Democracy 2.0. Techni-
cal Report 2014/625, Cryptology ePrint Archive, 2014. http:

//eprint.iacr.org/2014/625.

[NORV14] Stephan Neumann, Maina M. Olembo, Karen Renaud, and
Melanie Volkamer. Helios Verification: To Alleviate, or to Nom-
inate: Is That the Question, or Shall we Have Both? In Elec-
tronic Government and the Information Systems Perspective -
Third International Conference, EGOVIS 2014, Munich, Ger-
many, September 1-3, 2014. Proceedings, pages 246–260, 2014.

[OBV13] Maina M. Olembo, Steffen Bartsch, and Melanie Volkamer.
Mental Models of Verifiability in Voting. In Vote-ID 2013, pages
142–155, 2013.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. In Advances in Cryptology - EURO-
CRYPT ’99, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Prague, Czech Republic,
May 2-6, 1999, Proceeding, pages 223–238, 1999.

[PRST06] David C. Parkes, Michael O. Rabin, Stuart M. Shieber, and
Christopher Thorpe. Practical secrecy-preserving, verifiably cor-
rect and trustworthy auctions. In Proceedings of the 8th In-
ternational Conference on Electronic Commerce: The new e-
commerce - Innovations for Conquering Current Barriers, Ob-
stacles and Limitations to Conducting Successful Business on
the Internet, 2006, Fredericton, New Brunswick, Canada, Au-
gust 13-16, 2006, pages 70–81, 2006.

[RBH+10] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schnei-
der, and Zhe Xia. The Prêt à Voter Verifiable Election System.
Technical report, 2010.

[RRI16] Peter Y. A. Ryan, Peter B. Rønne, and Vincenzo Iovino. Selene:
Voting with transparent verifiability and coercion-mitigation.
In Financial Cryptography and Data Security - FC 2016 Inter-
national Workshops, BITCOIN, VOTING, and WAHC, Christ

187

http://eprint.iacr.org/2014/625
http://eprint.iacr.org/2014/625

Church, Barbados, February 26, 2016, Revised Selected Papers,
pages 176–192, 2016.

[Sca18] Enrico Scapin. Implementation-level analysis of cryptographic
protocols and their applications to e-voting systems. PhD thesis,
University of Stuttgart, Germany, 2018.

[SFC15] Ben Smyth, Steven Frink, and Michael R. Clarkson. Compu-
tational Election Verifiability: Definitions and an Analysis of
Helios and JCJ. Number 2015/233, 2015.

[SFD+14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kit-
cat, Harri Hursti, Margaret MacAlpine, and J. Alex Halderman.
Security Analysis of the Estonian Internet Voting System. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, pages 703–715, 2014.

[SK95] Kazue Sako and Joe Kilian. Receipt-Free Mix-Type Voting
Scheme - A Practical Solution to the Implementation of a Voting
Booth. In EUROCRYPT 1995, pages 393–403, 1995.

[Smi07] Warren D. Smith. Three Voting Protocols: ThreeBallot, VAV,
and Twin. In 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop, EVT’07, Boston, MA, USA, August 6,
2007, 2007.

[SP15] Alan Szepieniec and Bart Preneel. New Techniques for Elec-
tronic Voting. USENIX Journal of Election Technology and
Systems (JETS), 3(2):46 – 69, 2015. Cryptology ePrint Archive,
Report 2015/809.

[ST06] Berry Schoenmakers and Pim Tuyls. Efficient binary conver-
sion for paillier encrypted values. In Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, pages
522–537, 2006.

[SV15] Berry Schoenmakers and Meilof Veeningen. Universally Veri-
fiable Multiparty Computation from Threshold Homomorphic
Cryptosystems. In Applied Cryptography and Network Security
- 13th International Conference, ACNS 2015, New York, NY,
USA, June 2-5, 2015, Revised Selected Papers, pages 3–22, 2015.

188

[Tod08] Todd R. Weiss. http://www.computerworld.com/s/

article/9118204/Princeton_report_rips_N.J._e_voting_

machines_as_easily_hackable_, October 27th 2008.

[WH] Janna-Lynn Weber and Urs Hengartner. Usability Study of the
Open Audit Voting System Helios.

[WWH+10] Scott Wolchok, Eric Wustrow, J. Alex Halderman, Hari K.
Prasad, Arun Kankipati, Sai Krishna Sakhamuri, Vasavya Ya-
gati, and Rop Gonggrijp. Security analysis of India’s electronic
voting machines. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, pages 1–14, 2010.

[WWIH12] Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halder-
man. Attacking the Washington, D.C. Internet Voting System.
In Financial Cryptography and Data Security - 16th Interna-
tional Conference, FC 2012, Kralendijk, Bonaire, Februray 27-
March 2, 2012, Revised Selected Papers, pages 114–128, 2012.

189

 http://www.computerworld.com/s/article/9118204/Princeton_report_rips_N.J._e_voti ng_machines_as_easily_hackable_
 http://www.computerworld.com/s/article/9118204/Princeton_report_rips_N.J._e_voti ng_machines_as_easily_hackable_
 http://www.computerworld.com/s/article/9118204/Princeton_report_rips_N.J._e_voti ng_machines_as_easily_hackable_

Acknowledgements

This thesis would not have been written without the support and advice of
several people whom I would like to thank.

First of all, I am indebted to my advisor Ralf Küsters for supporting me
during the past four years and for giving me the opportunity to continue my
studies as an external student. Ralf’s passion for scientific excellence has
greatly inspired me.

Besides my advisor, I thank Tomasz Truderung, especially for guiding me
in the first year of my studies.

I am also grateful to all the other co-authors of those scientific publi-
cations on which this thesis is based. It has been a pleasure working with
you.

Finally, I thank all research group mates in Trier and Stuttgart for the
joyful time and thrilling darts competitions.

190

	Introduction
	Cryptographic Security Analysis
	Contributions and Structure of the Thesis

	Secure Electronic Voting
	E-Voting in a Nutshell
	Computational Model
	Verifiability
	Generic Verifiability Definition
	End-to-End Verifiability
	Individual and Universal Verifiability

	Accountability
	Privacy
	Privacy Definition
	Privacy of the Ideal Protocol
	Relationship to Coercion-Resistance

	sElect: A Lightweight Verifiable Remote E-Voting System
	Features and Limitations
	Description
	Formal Protocol Model
	Verifiability
	Accountability
	Privacy
	Risk-avoiding Adversaries
	Analysis

	Implementation
	Related Work

	Ordinos: A Verifiable Tally-Hiding Remote E-Voting System
	Contributions
	Description
	Formal Protocol Model
	Verifiability and Accountability
	Privacy
	Instantiation
	Implementation
	Related Work and Discussion

	Verifiability Notions for E-Voting Protocols
	Contributions
	A Specific Verifiability Goal by Küsters et al.
	Model
	Verifiability
	Discussion

	Verifiability by Benaloh
	Model
	Verifiability
	Discussion
	Casting in the KTV Framework

	E2E Verifiability by Kiayias et al.
	Model
	E2E Verifiability
	Discussion
	Casting in the KTV Framework

	Computational Election Verifiability by Cortier et al.
	Model
	Verifiability Against Malicious Bulletin Board
	Verifiability Against Malicious Registrar
	Strong Verifiability
	Weak Verifiability
	Tally Uniqueness
	Discussion
	Casting in the KTV Framework

	Computational Election Verifiability by Smyth et al.
	Model
	Individual Verifiability
	Universal Verifiability
	Election Verifiability
	Discussion
	Casting in the KTV Framework

	Symbolic Verifiability by Kremer et al.
	Model
	Individual and Universal Verifiability
	Discussion
	Casting in the KTV Framework

	Symbolic Verifiability by Cortier et al.
	Model
	Individual Verifiability
	Universal Verifiability
	E2E Verifiability
	No Clash
	Discussion
	Casting in the KTV Framework

	Publicly Auditable Secure MPC by Baum et al.
	Model
	Auditable Correctness
	Discussion
	Casting in the KTV Framework

	Universal Verifiability by Chevallier-Mames et al.
	Model
	Universal Verifiability
	Discussion
	Casting in the KTV Framework

	Universal Verifiability by Szepieniec et al.
	Model
	Universal Verifiability
	Discussion

	Summary and Conclusion
	Guidelines
	Exemplified Instantiation of the Guidelines

	Conclusion and Future Work
	Cryptographic Primitives
	Public-Key Encryption
	Digital Signatures
	Non-Interactive Zero-Knowledge Proofs
	Definitions
	(NIZK) Proofs used in Ordinos

	Secure Multiparty Computation
	Privacy
	Individual Accountability

	Formal Proofs
	Verifiability and Accountability Proof for sElect
	Privacy Proof for sElect
	Verifiability and Accountability Proof for Ordinos
	Privacy Proof for Ordinos

