7 research outputs found

    Photometric Bundle Adjustment for Dense Multi-view 3D Modeling

    Full text link

    Robust shape from depth images with GR2T

    Get PDF
    This paper proposes to infer accurately a 3D shape of an object captured by a depth camera from multiple view points. The Generalised Relaxed Radon Transform (GR2T) [1] is used here to merge all depth images in a robust kernel density estimate that models the surface of an object in the 3D space. The kernel is tailored to capture the uncertainty associated with each pixel in the depth images. The resulting cost function is suitable for stochastic exploration with gradient ascent algorithms when the noise of the observations is modelled with a differentiable distribution. When merging several depth images captured from several view points, extrinsic camera parameters need to be known accurately, and we extend GR2T to also estimate these nuisance parameters. We illustrate qualitatively the performance of our modelling and we assess quantitatively the accuracy of our 3D shape reconstructions computed from depth images captured with a Kinect camera

    Positionnement robuste et précis de réseaux d’images

    Get PDF
    To compute a 3D representation of a rigid scene from a collection of pictures is now possible thanks to the progress made by the multiple-view stereovision methods, even with a simple camera. The reconstruction process, arising from photogrammetry, consists in integrating information from multiple images taken from different viewpoints in order to identify the relative positions and orientations. Once the positions and orientations (external calibration) of the cameras are retrieved, the structure of the scene can be reconstructed. To solve the problem of calculating the Structure from Motion (SfM), sequential and global methods have been proposed. By nature, sequential methods tend to accumulate errors. This is observable in trajectories of cameras that are subject to drift error. When pictures are acquired around an object it leads to reconstructions where the loops do not close. In contrast, global methods consider the network of cameras as a whole. The configuration of cameras is searched and optimized in order to preserve at best the constraints of the cyclical network. Reconstructions of better quality can be obtained, but at the expense of computation time. This thesis aims at analyzing critical issues at the heart of these methods of external calibration and at providing solutions to improve their performance(accuracy , robustness and speed) and their ease of use (restricted parametrization).We first propose a fast and efficient feature tracking algorithm. We then show that the widespread use of a contrario robust estimation of parametric models frees the user from choosing detection thresholds, and allows obtaining a reconstruction pipeline that automatically adapts to the data. Then in a second step, we use the adaptive robust estimation and a series of convex optimizations to build a scalable global calibration chain. Our experiments show that the a contrario based estimations improve significantly the quality of the pictures positions and orientations, while being automatic and without parameters, even on complex camera networks. Finally, we propose to improve the visual appearance of the reconstruction by providing a convex optimization to ensure the color consistency between imagesCalculer une représentation 3D d'une scène rigide à partir d'une collection d'images est aujourd'hui possible grâce aux progrès réalisés par les méthodes de stéréo-vision multi-vues, et ce avec un simple appareil photographique. Le principe de reconstruction, découlant de travaux de photogrammétrie, consiste à recouper les informations provenant de plusieurs images, prises de points de vue différents, pour identifier les positions et orientations relatives de chaque cliché. Une fois les positions et orientations de caméras déterminées (calibration externe), la structure de la scène peut être reconstruite. Afin de résoudre le problème de calcul de la structure à partir du mouvement des caméras (Structure-from-Motion), des méthodes séquentielles et globales ont été proposées. Par nature, les méthodes séquentielles ont tendance à accumuler les erreurs. Cela donne lieu le plus souvent à des trajectoires de caméras qui dérivent et, lorsque les photos sont acquises autour d'un objet, à des reconstructions où les boucles ne se referment pas. Au contraire, les méthodes globales considèrent le réseau de caméras dans son ensemble. La configuration de caméras est recherchée et optimisée pour conserver au mieux l'ensemble des contraintes de cyclicité du réseau. Des reconstructions de meilleure qualité peuvent être obtenues, au détriment toutefois du temps de calcul. Cette thèse propose d'analyser des problèmes critiques au cœur de ces méthodes de calibration externe et de fournir des solutions pour améliorer leur performance (précision, robustesse, vitesse) et leur facilité d'utilisation (paramétrisation restreinte).Nous proposons tout d'abord un algorithme de suivi de points rapide et efficace. Nous montrons ensuite que l'utilisation généralisée de l'estimation robuste de modèles paramétriques a contrario permet de libérer l'utilisateur du réglage de seuils de détection, et d'obtenir une chaine de reconstruction qui s'adapte automatiquement aux données. Puis dans un second temps, nous utilisons ces estimations robustes adaptatives et une formulation du problème qui permet des optimisations convexes pour construire une chaine de calibration globale capable de passer à l'échelle. Nos expériences démontrent que les estimations identifiées a contrario améliorent de manière notable la qualité d'estimation de la position et de l'orientation des clichés, tout en étant automatiques et sans paramètres, et ce même sur des réseaux de caméras complexes. Nous proposons enfin d'améliorer le rendu visuel des reconstructions en proposant une optimisation convexe de la consistance colorée entre image

    Practical methods for convex multi-view reconstruction

    No full text
    Abstract. Globally optimal formulations of geometric computer vision problems comprise an exciting topic in multiple view geometry. These approaches are unaffected by the quality of a provided initial solution, can directly identify outliers in the given data, and provide a better theoretical understanding of geometric vision problems. The disadvantage of these methods are the substantial computational costs, which limit the tractable problem size significantly, and the tendency of reducing a particular geometric problem to one of the standard programs wellunderstood in convex optimization. We select a view on these geometric vision tasks inspired by recent progress made on other low-level vision problems using very simple (and easy to parallelize) methods. Our view also enables the utilization of geometrically more meaningful cost functions, which cannot be represented by one of the standard optimization problems. We also demonstrate in the numerical experiments, that our proposed method scales better with respect to the problem size than standard optimization codes.
    corecore