28 research outputs found

    Indirect Meltdown: Building Novel Side-Channel Attacks from Transient-Execution Attacks

    Full text link
    The transient-execution attack Meltdown leaks sensitive information by transiently accessing inaccessible data during out-of-order execution. Although Meltdown is fixed in hardware for recent CPU generations, most currently-deployed CPUs have to rely on software mitigations, such as KPTI. Still, Meltdown is considered non-exploitable on current systems. In this paper, we show that adding another layer of indirection to Meltdown transforms a transient-execution attack into a side-channel attack, leaking metadata instead of data. We show that despite software mitigations, attackers can still leak metadata from other security domains by observing the success rate of Meltdown on non-secret data. With LeakIDT, we present the first cache-line granular monitoring of kernel addresses. LeakIDT allows an attacker to obtain cycle-accurate timestamps for attacker-chosen interrupts. We use our attack to get accurate inter-keystroke timings and fingerprint visited websites. While we propose a low-overhead software mitigation to prevent the exploitation of LeakIDT, we emphasize that the side-channel aspect of transient-execution attacks should not be underestimated.Comment: published at ESORICS 202

    When keystroke meets password: Attacks and defenses

    Get PDF

    JShelter: Give Me My Browser Back

    Full text link
    The Web is used daily by billions. Even so, users are not protected from many threats by default. This position paper builds on previous web privacy and security research and introduces JShelter, a webextension that fights to return the browser to users. Moreover, we introduce a library helping with common webextension development tasks and fixing loopholes misused by previous research. JShelter focuses on fingerprinting prevention, limitations of rich web APIs, prevention of attacks connected to timing, and learning information about the computer, the browser, the user, and surrounding physical environment and location. We discovered a loophole in the sensor timestamps that lets any page observe the device boot time if sensor APIs are enabled in Chromium-based browsers. JShelter provides a fingerprinting report and other feedback that can be used by future security research and data protection authorities. Thousands of users around the world use the webextension every day
    corecore