66 research outputs found

    Multigrid optimization for space-time discontinuous Galerkin discretizations of advection dominated flows

    Get PDF
    The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of two- and three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization process we therefore choose to minimize the spectral radius of the error transformation operator. We specifically consider optimizing h-multigrid methods with explicit Runge-Kutta type smoothers for second and third order accurate space-time discontinuous Galerkin finite element discretizations of the 2D advection-diffusion equation. The optimized schemes are compared with current h-multigrid techniques employing Runge-Kutta type smoothers. Also, the efficiency of h-, p- and hp-multigrid methods for solving the Euler equations of gas dynamics with a higher order accurate space-time DG method is investigated

    HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II. Optimization of the Runge-Kutta smoother

    Get PDF
    Using a detailed multilevel analysis of the complete hp-Multigrid as Smoother algorithm accurate predictions are obtained of the spectral radius and operator norms of the multigrid error transformation operator. This multilevel analysis is used to optimize the coefficients in the semi-implicit Runge-Kutta smoother, such that the spectral radius of the multigrid error transformation operator is minimal under properly chosen constraints. The Runge-Kutta coefficients for a wide range of cell Reynolds numbers and a detailed analysis of the performance of the hp-MGS algorithm are presented. In addition, the computational complexity of the hp-MGS algorithm is investigated. The hp-MGS algorithm is tested on a fourth order accurate space-time discontinuous Galerkin finite element discretization of the advection-diffusion equation for a number of model problems, which include thin boundary layers and highly stretched meshes, and a non-constant advection velocity. For all test cases excellent multigrid convergence is obtained

    Multigrid waveform relaxation for the time-fractional heat equation

    Get PDF
    In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach, whose application to time-fractional problems seems very natural due to the fact that the fractional derivative at each spatial point depends on the values of the function at this point at all earlier times. Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform relaxation method has a computational cost of O(NMlog(M))O(N M \log(M)) operations, where MM is the number of time steps and NN is the number of spatial grid points. A semi-algebraic mode analysis is also developed to theoretically confirm the good results obtained. Several numerical experiments, including examples with non-smooth solutions and a nonlinear problem with applications in porous media, are presented
    corecore