6 research outputs found

    Strong Hanani-Tutte for the Torus

    Get PDF
    If a graph can be drawn on the torus so that every two independent edges cross an even number of times, then the graph can be embedded on the torus

    Hanani-Tutte for radial planarity

    Get PDF
    A drawing of a graph G is radial if the vertices of G are placed on concentric circles C 1 , . . . , C k with common center c , and edges are drawn radially : every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Toth

    C-Planarity Testing of Embedded Clustered Graphs with Bounded Dual Carving-Width

    Get PDF
    For a clustered graph, i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeomorphic to a closed disk such that 1. the subgraph induced by each cluster is drawn in the interior of the corresponding disk, 2. each edge intersects any disk at most once, and 3. the nesting between clusters is reflected by the representation, i.e., child clusters are properly contained in their parent cluster. The computational complexity of this problem, whose study has been central to the theory of graph visualization since its introduction in 1995 [Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clustered graphs. ESA'95], has only been recently settled [Radoslav Fulek and Csaba D. T\'oth. Atomic Embeddability, Clustered Planarity, and Thickenability. To appear at SODA'20]. Before such a breakthrough, the complexity question was still unsolved even when the graph has a prescribed planar embedding, i.e, for embedded clustered graphs. We show that the C-Planarity Testing problem admits a single-exponential single-parameter FPT algorithm for embedded clustered graphs, when parameterized by the carving-width of the dual graph of the input. This is the first FPT algorithm for this long-standing open problem with respect to a single notable graph-width parameter. Moreover, in the general case, the polynomial dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and T\'oth. To further strengthen the relevance of this result, we show that the C-Planarity Testing problem retains its computational complexity when parameterized by several other graph-width parameters, which may potentially lead to faster algorithms.Comment: Extended version of the paper "C-Planarity Testing of Embedded Clustered Graphs with Bounded Dual Carving-Width" to appear in the Proceedings of the 14th International Symposium on Parameterized and Exact Computation (IPEC 2019

    Constrained Planarity in Practice -- Engineering the Synchronized Planarity Algorithm

    Full text link
    In the constrained planarity setting, we ask whether a graph admits a planar drawing that additionally satisfies a given set of constraints. These constraints are often derived from very natural problems; prominent examples are Level Planarity, where vertices have to lie on given horizontal lines indicating a hierarchy, and Clustered Planarity, where we additionally draw the boundaries of clusters which recursively group the vertices in a crossing-free manner. Despite receiving significant amount of attention and substantial theoretical progress on these problems, only very few of the found solutions have been put into practice and evaluated experimentally. In this paper, we describe our implementation of the recent quadratic-time algorithm by Bl\"asius et al. [TALG Vol 19, No 4] for solving the problem Synchronized Planarity, which can be seen as a common generalization of several constrained planarity problems, including the aforementioned ones. Our experimental evaluation on an existing benchmark set shows that even our baseline implementation outperforms all competitors by at least an order of magnitude. We systematically investigate the degrees of freedom in the implementation of the Synchronized Planarity algorithm for larger instances and propose several modifications that further improve the performance. Altogether, this allows us to solve instances with up to 100 vertices in milliseconds and instances with up to 100 000 vertices within a few minutes.Comment: to appear in Proceedings of ALENEX 202

    Practical Experience with Hanani-Tutte for Testing c-Planarity

    No full text
    corecore