27,970 research outputs found

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Key Generation in Wireless Sensor Networks Based on Frequency-selective Channels - Design, Implementation, and Analysis

    Full text link
    Key management in wireless sensor networks faces several new challenges. The scale, resource limitations, and new threats such as node capture necessitate the use of an on-line key generation by the nodes themselves. However, the cost of such schemes is high since their secrecy is based on computational complexity. Recently, several research contributions justified that the wireless channel itself can be used to generate information-theoretic secure keys. By exchanging sampling messages during movement, a bit string can be derived that is only known to the involved entities. Yet, movement is not the only possibility to generate randomness. The channel response is also strongly dependent on the frequency of the transmitted signal. In our work, we introduce a protocol for key generation based on the frequency-selectivity of channel fading. The practical advantage of this approach is that we do not require node movement. Thus, the frequent case of a sensor network with static motes is supported. Furthermore, the error correction property of the protocol mitigates the effects of measurement errors and other temporal effects, giving rise to an agreement rate of over 97%. We show the applicability of our protocol by implementing it on MICAz motes, and evaluate its robustness and secrecy through experiments and analysis.Comment: Submitted to IEEE Transactions on Dependable and Secure Computin

    DropIn: Making Reservoir Computing Neural Networks Robust to Missing Inputs by Dropout

    Full text link
    The paper presents a novel, principled approach to train recurrent neural networks from the Reservoir Computing family that are robust to missing part of the input features at prediction time. By building on the ensembling properties of Dropout regularization, we propose a methodology, named DropIn, which efficiently trains a neural model as a committee machine of subnetworks, each capable of predicting with a subset of the original input features. We discuss the application of the DropIn methodology in the context of Reservoir Computing models and targeting applications characterized by input sources that are unreliable or prone to be disconnected, such as in pervasive wireless sensor networks and ambient intelligence. We provide an experimental assessment using real-world data from such application domains, showing how the Dropin methodology allows to maintain predictive performances comparable to those of a model without missing features, even when 20\%-50\% of the inputs are not available

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics
    • …
    corecore