298,157 research outputs found

    Operationalizing Cost-Volume-Profit analysis under uncertainty

    Get PDF
    Cost-Volume-Profit analysis is a major business planning tool. It is limited by its assumptions about known price and costs. This study uses MAPLE software to operationalize CVP under uncertainty for practical application. Illustrated examples show that the impact of expected selling price and expected variable cost on expected breakeven quantity is more sensitive than the impact of the standard deviations of selling price and variable cost. Specifically, when expected selling price decreases, the expected breakeven quantity increases rapidly. However, as the standard deviations of selling price or variable cost increases, expected breakeven quantity increases at the same rate

    2Planning for Contingencies: A Decision-based Approach

    Full text link
    A fundamental assumption made by classical AI planners is that there is no uncertainty in the world: the planner has full knowledge of the conditions under which the plan will be executed and the outcome of every action is fully predictable. These planners cannot therefore construct contingency plans, i.e., plans in which different actions are performed in different circumstances. In this paper we discuss some issues that arise in the representation and construction of contingency plans and describe Cassandra, a partial-order contingency planner. Cassandra uses explicit decision-steps that enable the agent executing the plan to decide which plan branch to follow. The decision-steps in a plan result in subgoals to acquire knowledge, which are planned for in the same way as any other subgoals. Cassandra thus distinguishes the process of gathering information from the process of making decisions. The explicit representation of decisions in Cassandra allows a coherent approach to the problems of contingent planning, and provides a solid base for extensions such as the use of different decision-making procedures.Comment: See http://www.jair.org/ for any accompanying file

    A philosophical context for methods to estimate origin-destination trip matrices using link counts.

    Get PDF
    This paper creates a philosophical structure for classifying methods which estimate origin-destination matrices using link counts. It is claimed that the motivation for doing so is to help real-life transport planners use matrix estimation methods effectively, especially in terms of trading-off observational data with prior subjective input (typically referred to as 'professional judgement'). The paper lists a number of applications that require such methods, differentiating between relatively simple and highly complex applications. It is argued that a sound philosophical perspective is particularly important for estimating trip matrices in the latter type of application. As a result of this argument, a classification structure is built up through using concepts of realism, subjectivity, empiricism and rationalism. Emphasis is put on the fact that, in typical transport planning applications, none of these concepts is useful in its extreme form. The structure is then used to make a review of methods for estimating trip matrices using link counts, covering material published over the past 30 years. The paper concludes by making recommendations, both philosophical and methodological, concerning both practical applications and further research
    • 

    corecore