7 research outputs found

    On the use of lateral wave for the interlayer debonding detecting in an asphalt airport pavement using a multistatic GPR system

    Get PDF
    In this paper, we focus on the detection of the interlayer debonding of the asphalt airport pavement by the Ground-penetrating Radar (GPR) system. Since the interlayer debonding usually occurs in the shallow region of the asphalt airport pavement (several centimeters), it is difficult to interpret the anomalies or the defects from the GPR signals composed of many waves under the boundary conditions. Moreover, the wavelength of the ordinary GPR system is over several centimeters. Therefore, the spatial resolution of the system is not accurate enough to consider the millimeter thickness of the debonding layer. To overcome these problems, we propose a new method based on evaluating the lateral wave behavior of common midpoint (CMP) gathers collected by a multiple static GPR system. The multi-static GPR system is a stepped frequency continuous wave (SFCW) radar system, which consists of 8 transmitting and 8 receiving bowtie antennas. The system operates in the frequency range from 50 MHz to 1.5 GHz. After the validation of the simulation, the results of the interlayer debonding detection were evaluated by a field experiment obtained at Tokyo International Airport. The proposed method can detect the debonding layers which are less than 1mm. Also, it is shown that our proposed method has a high consistency with the conventional acoustic finding method in the field measurement. It provides an innovative and effective method for the interlayer debonding detection of a partially damaged airport asphalt pavement, which is difficult to be observed by the ordinary GPR signals

    Practical Approach for High-Resolution Airport Pavement Inspection with the Yakumo Multistatic Array Ground-Penetrating Radar System

    No full text
    It is important to identify the thin cracks within the airport pavement layers. To achieve this goal, a practical interferometric approach using the Yakumo multistatic ground-penetrating radar system was developed to detect the slight variability in wave propagation velocity and/or thickness caused by the thin cracks. In comparison with the conventional common midpoint (CMP) velocity estimation method, the proposed method can provide much higher-resolution estimations of slight deviations in the velocity and thickness from their corresponding reference values in the undamaged asphalt through the comparison of two CMP datasets. These deviations can be obtained analytically instead of graphically extracted from the CMP velocity spectrum. The proposed approach was not only analyzed using the simulated datasets, but also practically demonstrated at both an experimental model site and an actual airport site. In the simulation tests, velocity deviations on the order of a few millimeters per nanosecond were detected, and the experimental results shows good agreement with the ground truth and coring samples. This method provides a novel way to inspect partially damaged pavement when the thin cracks are difficult to detect using the reflected signals

    活動報告2017

    Get PDF
    corecore