7,418 research outputs found

    Constructions of Mutually Unbiased Bases

    Full text link
    Two orthonormal bases B and B' of a d-dimensional complex inner-product space are called mutually unbiased if and only if ||^2=1/d holds for all b in B and b' in B'. The size of any set containing (pairwise) mutually unbiased bases of C^d cannot exceed d+1. If d is a power of a prime, then extremal sets containing d+1 mutually unbiased bases are known to exist. We give a simplified proof of this fact based on the estimation of exponential sums. We discuss conjectures and open problems concerning the maximal number of mutually unbiased bases for arbitrary dimensions.Comment: 8 pages late

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    Efficient Two-Stage Group Testing Algorithms for Genetic Screening

    Full text link
    Efficient two-stage group testing algorithms that are particularly suited for rapid and less-expensive DNA library screening and other large scale biological group testing efforts are investigated in this paper. The main focus is on novel combinatorial constructions in order to minimize the number of individual tests at the second stage of a two-stage disjunctive testing procedure. Building on recent work by Levenshtein (2003) and Tonchev (2008), several new infinite classes of such combinatorial designs are presented.Comment: 14 pages; to appear in "Algorithmica". Part of this work has been presented at the ICALP 2011 Group Testing Workshop; arXiv:1106.368

    On the Decoding Complexity of Cyclic Codes Up to the BCH Bound

    Full text link
    The standard algebraic decoding algorithm of cyclic codes [n,k,d][n,k,d] up to the BCH bound tt is very efficient and practical for relatively small nn while it becomes unpractical for large nn as its computational complexity is O(nt)O(nt). Aim of this paper is to show how to make this algebraic decoding computationally more efficient: in the case of binary codes, for example, the complexity of the syndrome computation drops from O(nt)O(nt) to O(tn)O(t\sqrt n), and that of the error location from O(nt)O(nt) to at most max{O(tn),O(t2log(t)log(n))}\max \{O(t\sqrt n), O(t^2\log(t)\log(n))\}.Comment: accepted for publication in Proceedings ISIT 2011. IEEE copyrigh

    Further Generalisations of Twisted Gabidulin Codes

    Get PDF
    We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.Comment: 10 pages, accepted at the International Workshop on Coding and Cryptography (WCC) 201
    corecore