3,806 research outputs found

    Lossy network correlated data gathering with high-resolution coding

    Get PDF
    Sensor networks measuring correlated data are considered, where the task is to gather data from the network nodes to a sink. A specific scenario is addressed, where data at nodes are lossy coded with high-resolution, and the information measured by the nodes has to be reconstructed at the sink within both certain total and individual distortion bounds. The first problem considered is to find the optimal transmission structure and the rate-distortion allocations at the various spatially located nodes, such as to minimize the total power consumption cost of the network, by assuming fixed nodes positions. The optimal transmission structure is the shortest path tree and the problems of rate and distortion allocation separate in the high-resolution case, namely, first the distortion allocation is found as a function of the transmission structure, and second, for a given distortion allocation, the rate allocation is computed. The second problem addressed is the case when the node positions can be chosen, by finding the optimal node placement for two different targets of interest, namely total power minimization and network lifetime maximization. Finally, a node placement solution that provides a tradeoff between the two metrics is proposed

    Aggregate node placement for maximizing network lifetime in sensor networks

    Get PDF
    Sensor networks have been receiving significant attention due to their potential applications in environmental monitoring and surveillance domains. In this paper, we consider the design issue of sensor networks by placing a few powerful aggregate nodes into a dense sensor network such that the network lifetime is significantly prolonged when performing data gathering. Specifically, given K aggregate nodes and a dense sensor network consisting of n sensors with K â‰Ș n, the problem is to place the K aggregate nodes into the network such that the lifetime of the resulting network is maximized, subject to the distortion constraints that both the maximum transmission range of an aggregate node and the maximum transmission delay between an aggregate node and its covered sensor are met. This problem is a joint optimization problem of aggregate node placement and the communication structure, which is NP-hard. In this paper, we first give a non-linear programming solution for it. We then devise a novel heuristic algorithm. We finally conduct experiments by simulation to evaluate the performance of the proposed algorithm in terms of network lifetime. The experimental results show that the proposed algorithm outperforms a commonly used uniform placement schema - equal distance placement schema significantly

    Optimal fault-tolerant placement of relay nodes in a mission critical wireless network

    Get PDF
    The operations of many critical infrastructures (e.g., airports) heavily depend on proper functioning of the radio communication network supporting operations. As a result, such a communication network is indeed a mission-critical communication network that needs adequate protection from external electromagnetic interferences. This is usually done through radiogoniometers. Basically, by using at least three suitably deployed radiogoniometers and a gateway gathering information from them, sources of electromagnetic emissions that are not supposed to be present in the monitored area can be localised. Typically, relay nodes are used to connect radiogoniometers to the gateway. As a result, some degree of fault-tolerance for the network of relay nodes is essential in order to offer a reliable monitoring. On the other hand, deployment of relay nodes is typically quite expensive. As a result, we have two conflicting requirements: minimise costs while guaranteeing a given fault-tolerance. In this paper address the problem of computing a deployment for relay nodes that minimises the relay node network cost while at the same time guaranteeing proper working of the network even when some of the relay nodes (up to a given maximum number) become faulty (fault-tolerance). We show that the above problem can be formulated as a Mixed Integer Linear Programming (MILP) as well as a Pseudo-Boolean Satisfiability (PB-SAT) optimisation problem and present experimental results com- paring the two approaches on realistic scenarios

    On the interaction of data representation and routing in sensor networks

    Get PDF
    We consider data gathering by a network with a sink node and a tree communication structure, where the goal is to minimize the total transmission cost of transporting the information, collected by the nodes, to the sink node. This problem requires a joint optimization of the data representation at the nodes and of the transmission structure. First, we study the case when the measured data are correlated random variables, both in the lossless scenario with Slepian-Wolf coding, and in the high-resolution lossy scenario with optimal rate-distortion allocation. We show that the optimal transmission structure is the shortest path tree, and we find, in closed-form, the rate and distortion allocation. Second, we study the case when the measured data are deterministic piecewise constant signals, and data is described with adaptive level wavelet-based multiresolution representation. We show experimentally that, when computation is decentralized, there is an optimal network division into node groups of adaptive size. Finally, we also analyze the node positioning problem where, given a correlation structure and an available number of sensors, the goal is to place the nodes optimally in terms of minimizing the transmission cost; our results show that important gains can be obtained compared to a uniformly distributed sensor positionin

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    Decentralized Erasure Codes for Distributed Networked Storage

    Full text link
    We consider the problem of constructing an erasure code for storage over a network when the data sources are distributed. Specifically, we assume that there are n storage nodes with limited memory and k<n sources generating the data. We want a data collector, who can appear anywhere in the network, to query any k storage nodes and be able to retrieve the data. We introduce Decentralized Erasure Codes, which are linear codes with a specific randomized structure inspired by network coding on random bipartite graphs. We show that decentralized erasure codes are optimally sparse, and lead to reduced communication, storage and computation cost over random linear coding.Comment: to appear in IEEE Transactions on Information Theory, Special Issue: Networking and Information Theor

    Energy efficient strategies for deployment of a two-level wireless sensor network

    Get PDF

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE
    • 

    corecore