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Abstract

We consider the interaction between the physical representation of information in a correlated data

field, and the way that information is transmitted to a central processor. Namely, we study data gathering

to a sink node, by considering a set of relevant metrics: first we consider energy efficiency, where the

goal is to minimize the total transmission cost of transporting the information collected by the nodes,

to the sink node, and second we consider mean-square-error (MSE) distortion, where the goal is to

represent the information field with a maximal accuracy. The first problem requires a joint optimization

of the data representation at the nodes and of the transmission structure; we study both the lossless

scenario with Slepian-Wolf coding, and the high-resolution lossy scenario with optimal rate-distortion

allocation. We show that the optimal transmission structure is the shortest path tree, and we find in

closed-form the rate and distortion allocation. The second problem is relevant for data gathering of

spatio-temporal correlated processes under delay constraints, where we show that both the temporal and

the spatial distortion can be combined in a single measure of distortion, which depends on the density of

the network. We prove that, for various standard correlation structures, there is an optimal finite density

of the sensor network for which the total distortion is minimized.
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Fig. 1. In this example, data from nodes X1, X2, . . . , XN need to arrive at sink S. A rate supply Ri is allocated to each node

Xi, and, in the case of lossy coding, the distortion at that node is Di. In thick solid lines, a chosen tree transmission structure

is shown. In thin dashed lines, the other possible links are shown. The path from node i to the sink is shown as gray line, and

its weight is ci.

I. INTRODUCTION

A. Motivation

Consider a typical sensor network scenario [30], where sensors measure a data field (e.g.

temperature) and the results of their measurements have to be transported across the network, to

a certain designated node called the sink (see Figure 1). This is referred to as data gathering, and

it is a relevant problem in various sensor network settings, where information from the network,

in its coded form, is needed at a central base station node, for storage, monitoring or control

purposes.

We address this problem from a joint source-channel coding perspective, corresponding to

the network layer. Namely, given the statistical structure of the correlated data field, we study

the interactions between the representation of the measured information, and the network over

which this information needs to be transmitted. More specifically, the information is represented

by means of the rate allocation employed for data coding at measuring nodes, and the actual

placement in the field of those nodes. The transmission network is represented by its graph

structure, formed by the nodes inter-connections, on which the information is transmitted to
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the central processor that needs to reconstruct the data field. For quantifying these interactions,

we consider a set of relevant metrics: energy used for the transmission and mean-square-error

(MSE) distortion of the reconstruction. On one hand, the source to be coded is the correlated

data field, and the task of the coder is twofold: first, to properly sample the correlated data field

so that the result is a representation with a good accuracy, and second, to allocate coding rates

at the nodes such that data can be reconstructed at the sink. Thus, in our setting, the source

coder aims at a proper representation of information at the network nodes, as a function of the

characteristics of the measured field, and of the nodes positions with respect to each other. On the

other hand, the channel is the connectivity network formed by the nodes placed in the field. The

task of the channel coder is to find a proper transmission structure (i.e. a subset of the edges of

the connectivity graph) and/or a node placement that optimizes the metric of interest. Both the

source and channel coding tasks have to be done under various restrictions, including energy

and communication constraints1.

B. Measured Data and Network Characteristics

There are several important issues specific to sensor networks measuring and transporting

data [30]. First, the measured data have certain redundancy characteristics. For instance, if the

measured data are random variables (e.g. temperature), the values at nodes are correlated and

the data structure is given by the spatio-temporal correlation.

Second, the limited coverage and transmission capabilities of the sensor nodes induce limited

connectivity and communication patterns in the network graph. Nodes usually have knowledge

only about other sensors situated in a limited neighborhood, so efficient joint representation of

data by groups of nodes has to be done in a decentralized manner. Also, due to the battery

energy limitations, most nodes cannot send their data directly to the sink, and therefore data

has to be relayed by other nodes. This implies that efficient routing is necessary, and moreover

it has to be decentralized as well. Also, depending on the coding strategy that determines the

amount of internode communication, the task of data representation at nodes may or may not

separate from the task of routing that data across the network.

1Implicitly, we are using the assumption that the network is a bit-pipe, and that sources will be represented in a coded digital

form. This level of abstraction makes the problem tractable, but can be suboptimal in the wireless case, as demonstrated in [19].
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Third, the actual node positions influence both the accuracy of the measured data and the

energy efficiency of the network. For instance, placing most nodes close to the sink will improve

their lifetime since they only have to transmit data over small distances; however, this will leave

areas that are far from the sink uncovered, which means high inaccuracy in the overall data

measurement. On the contrary, an even distribution of nodes over the measured field will provide

a good data accuracy, but at the same time, the energy consumption is large. Moreover, finding

an optimized tradeoff has to take into account both data representation and routing.

Finally, in the case of data gathering of spatio-temporal processes under delay constraints, the

network density influences the total distortion of reconstruction. Namely, a network with a small

number of nodes results in a high spatial distortion of approximation, but the temporal distortion

is small since data reaches the sink in a small number of hops. On the contrary, a network with

a large density has a low spatial distortion, but the temporal distortion is high due to the large

number of hops to the sink.

C. Metrics

There are certain specific metrics of interest for this type of applications, namely energy

efficiency and accuracy of the data reconstruction at the sink. In sensor networks, the energy

efficiency of the network depends on both the rate allocation at nodes and on the routing strategy

(the paths chosen to transmit the data). Namely, the energy consumed by a node is usually

proportional to the product [rate] × [path weight], where the [rate] term represents the data

amount (in bits) sent by a node, and the [path weight] is an increasing function of the euclidean

distance between nodes (for instance, [euclidean distance]κ, where κ ∈ [2, 4] is the path-loss

exponent).

The accuracy of data reconstruction depends on the distortion allowed at measuring nodes

and on the node placement, and influences the data representation as well. Namely, the desired

accuracy of data representation at nodes determines the rate necessary to accommodate the

corresponding distortion, and thus how much energy is needed to transmit that rate. Due to spatial

representation reasons, the accuracy is influenced by the node placement as well. Moreover, for

spatio-temporal processes, delay represents an additional issue that affects the accuracy of the

reconstruction, since timely arrival of data reduces the total distortion.

To summarize, there is a strong interaction between data representation and routing, and the
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metrics relevant for sensor network scenarios. The goal of this work is to study the interaction

among these important parameters, for designing practical, efficient and accurate joint measure-

ment (source coding) and transmission (channel coding) strategies. We will show that a joint

consideration of the source and channel coding can result in significant improvements in terms

of the metrics of interest.

D. Related Work

Bounds on the performance of networks measuring correlated data have been derived in [26],

[33]. Progress towards practical implementation of Slepian-Wolf coding [35] has been achieved

in [1], [31], [32]. However, none of these works takes into consideration the cost of transmitting

the data over the links and the additional constraints that are imposed on the rate allocation by

the joint treatment of source coding and transmission.

The problem of optimizing the transmission structure in the context of sensor networks has

been considered in [24], [21], where the [energy], and the [energy] × [delay] metric are studied,

and practical algorithms are proposed. But in these studies, the correlation present in the data is

not exploited for the minimization of the metric.

Recent work that exploit correlation in the data in the context of sensor networks include [2],

[15], [28].

In [28] an empirical data correlation model is used for a set of experimentally obtained

data, and the authors propose cluster-based tree structures shown to have a good performance

depending on the correlation level. The correlation function is derived as an approximation of

the conditional entropy, and the cost function is the sum of bits transmitted by the network.

In [15], a circular-coverage correlation model on a grid is used, where correlation is modelled

as a parameter proportional to the area covered by a sensor. The authors provide randomized

shortest-path aggregation trees with constant-ratio approximations.

Some examples of network flow with joint coding of correlated sources under capacity con-

straints on the transmission links and Slepian-Wolf constraints on the rates are studied in [2],

where trees are shown to perform suboptimally if splittable flows are allowed.

We note that in some scenarios, uncoded transmission is optimal [18].

A joint treatment of data aggregation and transmission structure is considered in [20], but

the model does not take into account possible collaborations for joint coding among nodes. We
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consider scenarios where joint source coding among nodes exploits inter-node correlations by

means of Slepian-Wolf coding, and compare this approach with coding by explicit communica-

tion, where such collaborations are not allowed, and coding is rather done by using only available

side information.

The rate-distortion region of coding with high-resolution for arbitrarily correlated sources

has been found in [37]. We focus on finding the optimal rate-distortion operation point when

additionally, energy constraints are imposed.

An analysis of the impact of data irregularity on the spatio-temporal sampling is done in

[17]. Our novel take on the problem of data gathering of spatio-temporal processes is that we

are able to formulate the problem in terms of a unique performance measure, namely the total

distortion.

E. Main Contributions and Organization of the Chapter

The main contribution of this work is an unified treatment of data representation, routing and

node placement in sensor networks, for the optimization of various metrics of interest. First, we

consider energy efficiency, and we show that for data gathering of spatially correlated processes,

the task of data representation at nodes separates from the transmission structure optimization. By

using this separation result, we are able to find the optimal transmission structure, and the

corresponding rate-distortion allocation. Second, we consider the distortion given by the total

MSE of representation of the field at the sink, for energy efficient data gathering, and which

includes spatial and temporal distortions. We show that for spatio-temporally processes, in general

there is an optimal network density that minimizes this distortion.

In Section II we review some of the main concepts and methods used in this chapter. In Section

III we present the network, transmission and signal models analyzed in this work. Section IV

studies data gathering of spatially correlated but temporally i.i.d. random processes, namely

the cases of lossless and high-resolution lossy coding, and addresses the node placement prob-

lem. Section V studies data gathering of spatio-temporally correlated processes: a performance

measure of interest is defined, namely the total distortion, an analysis of this measure for the

one-dimensional grid is performed, and the model is generalized for a two-dimensional grid. We

conclude with Section VI.
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Fig. 2. The Slepian-Wolf region for two correlated sources X1 and X2.

II. BACKGROUND

In this section we review some of the main concepts used in this chapter.

Denote by H(X) the entropy of a discrete random variable X . The entropy is a measure of

uncertainty of a random variable [6]: H(X) = −∑
x∈X p(x) log p(x), where X is the discrete

alphabet of X . Further, denote by H(X|Y ) the conditional entropy of a random variable X

given that the random variable Y is known.

Consider the problem of lossless coding of two random sources X1 and X2 that are corre-

lated. Intuitively each of the sources can code their data at a rate equal to at least their correspond-

ing entropies, R1 = H(X1), R2 = H(X2), respectively. If they are able to communicate, then

they could coordinate their coding and use together a total rate of R1+R2 = H(X1, X2). Slepian

and Wolf [35] showed that two correlated sources can be coded with a total rate equal to the

joint entropy H(X1, X2) even if they are not able to communicate with each other, as long as

their individual rates are at least equal to the conditional entropies, H(X1|X2) and H(X2|X1)

respectively (see Figure 2); this easily generalizes to the N -dimensional case.

When coding is done in a lossy manner, that is the sources are coded under distortion

constraints, then the problem of finding the rate-distortion region becomes difficult [3], and

for most scenarios it remains open. However, a recent result [37] finds the rate-distortion

region for high resolution coding. The main idea of the proof in [37] is that at high rates,

quantization followed by Slepian-Wolf coding is optimal. In the case of two sources coded with
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high resolution, the rate-distortion region is similar to the Slepian-Wolf region, with the addition

of terms related to the distortions D1, D2:

R1 ≥ h(X1|X2) − log 2πeD1,

R2 ≥ h(X2|X1) − log 2πeD2,

R1 +R2 ≥ h(X1, X2) − log(2πe)2D1D2,

where h(X) is the differential entropy of a continuous amplitude random variable [6].

Consider now the case where sources have to be sent over a transmission channel, to a

certain destination, or receiver. One important problem in this case is if and how to adapt the

characteristics of the source to those of the channel. This is called joint source-channel coding,

and it is a subject that has been extensively studied in the literature (e.g. [4], [27]). Namely,

an important result of information theory states that in the point-to-point case (a single source

transmitting to a single receiver), and for infinitely long block-lengths, the separation of the

source coder from the channel coder is optimal [34], [36]. However, in the multiuser case, which

includes the scenario discussed in this chapter, separation of the source and channel coding may

no longer be optimal. The results in this chapter reiterate this paradigm: a joint consideration of

the source coder (rate and distortion allocation at the measuring nodes), and of the channel coder

(the actual transmission structure used to transport the measured information to the destination)

does improve the performance of the system, in terms of both energy used for communication

and accuracy of the reconstruction.

III. PROBLEM SETTING

A. Network Model

Consider a network of N nodes. Let X = (X1, . . . , XN) be the vector formed by the values

representing the sources measured at nodes 1, . . . , N . The information measured at nodes has to

be transmitted through the links of the network to the designated base station (see Figure 1). We

will assume that the interference among nodes is negligible, and there are no capacity constraints

on the links (the case of omnidirectional interfering wireless channels is beyond the scope of

this study). Such assumptions are realistic in the case of wired networks or if the antennas are

unidirectional. For such scenarios, the optimal gathering structure is a tree.
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In some parts of this work, for the sake of simplicity, we use the one-dimensional network

model in Figure 3 rather than the two-dimensional model in Figure 1.

B. Signal Model

1) Spatially Correlated Gaussian Random Field: We will consider first the case where X =

(X1, . . . , XN) is a vector formed by random variables representing the sources measured at nodes

1, . . . , N . The samples taken at nodes are spatially correlated and independent in time. We assume

that the random variables are continuous and that there is a high-resolution quantizer in each

sensor. In the lossless source coding case, a rate allocation {Ri}N
i=1 (bits) has to be assigned at

the nodes. In addition, if the data can be transmitted in a lossy manner, a distortion allocation

{Di}N
i=1 has to be assigned as well, so that the quantized measured information samples are

described with certain total distortion D and individual {Dmax
i }N

i=1 distortion constraints.

For the sake of clarity, we use as an example a zero-mean jointly Gaussian model X ∼
NN(0,K), with unit variances σii = 1:

f(X) =
1√

2π det(K)1/2
e−( 1

2
(X)T K−1(X)),

where K is the covariance matrix of X, with elements depending on the distance between the

corresponding nodes (e.g. Kij = exp(−cdβ
i,j), c > 0, β ∈ {1, 2}, where di,j is the distance

between nodes i and j [7], [9]). Although we will show numerical evaluations performed using

the Gaussian random field model, our results are valid for any spatially correlated random

processes, whose correlation decreases with distance.
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2) Spatio-Temporally Correlated Gaussian Random Field: Further, we will consider spatio-

temporal correlated processes X(x, t), where x denotes the space dimension, and t denotes

the time dimension. Our model for spatio-temporal processes is a generalization of the spatial

model introduced in the previous Section III-B.1, by considering time as an additional dimen-

sion. Namely, we further assume that the process measured by the field is Gaussian distributed:

each node measures a zero-mean and unit variance normal random variable X(x, t) ≈ N (0, 1),

which is correlated both in space and in time with the rest of the network nodes. We consider

correlation structures of the form

E [X(x1, t1)X(x2, t2)] = σX(x1,t1),X(x2,t2)

= σ(|x1 − x2|, |t1 − t2|) (1)

= e−c((x1−x2)2+γ2(t1−t2)2)
β
2 ,

with γ the scaling constant for the time axis, and β = 1 corresponding to a Gauss-Markov field

or β = 2 corresponding to a squared distance correlation model, and c a constant that measures

the intensity of correlation [7].

IV. DATA GATHERING OF SPATIALLY CORRELATED RANDOM PROCESSES

A. Lossless Data Gathering

Consider data gathering of random processes. Denote by {Ri}N
i=1 the rate allocation at nodes,

by ST an arbitrary spanning tree of G, and by ci the total weight of the path connecting node

i to S on the spanning tree ST . For a given network with connectivity graph G = (V,E), we

formulate our problem as follows (see Figure 1):

{{R∗
i , c

∗
i }N

i=1, ST
∗} = arg min

Ri,ci,ST

∑
i∈V

Rici (2)

under constraints
∑
i∈X

Ri ≥ H(X|XC),∀X ⊂ V, (3)

where (3) are the Slepian-Wolf constraints on rates, for joint data representation at nodes.

1) Optimal Transmission Structure is the Shortest Path Tree (SPT): Constraints (3) imply

that nodes can code with any rate that obeys the constraint region without explicitly exchanging

data. As a consequence, we can state the following theorem [9]:
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Theorem 1: (Separation of the joint optimization of source coding and transmission structure:)

The overall joint optimization (2) can be achieved by first optimizing the transmission structure

with respect only to the link weights ci, and then optimizing the rate allocation for the given

transmission structure under the constraints (3).

Proof: By definition, for any given node, the cost function in (2) is separable as the

product of a function that depends only on the rate allocated at that node, and another function

that depends only on the link weights. Once the rate allocation is fixed, the best way (least cost)

to transport any amount of data from a given node i to the sink S does not depend on the value

of the rate Ri. Since this holds for any rate allocation, it is also true for the minimizing rate

allocation and the result follows.

Theorem 1 implies that the optimal transmission structure that optimizes (2) is the shortest

path tree, given by the superposition of the shortest paths from all nodes to the sink (ST ∗=SPT):

Corollary 1: (Optimality of the shortest path tree (SPT) for the single-sink data gathering

problem)

When there is a single sink S in the data gathering problem and Slepian-Wolf coding is used,

the shortest path tree (SPT) rooted in S is optimal, in terms of minimizing (2), for any rate

allocation.

Proof: The best way to transport the data from any node to the sink is to use the shortest

path. Minimizing the sum of costs under constraints in (2) becomes equivalent to minimizing the

cost corresponding to each node independently. Since the shortest path tree is a superposition of

all the individual shortest paths corresponding to the different nodes, it is optimal for any rate

allocation that does not depend on the transmission structure, which is the case here.

2) Rate Allocation: Denote by c∗i = dSPT (i, S) the total weight of the path from node i to the

sink S. For the rest of this section, suppose without loss of generality that nodes are ordered in

a list with increasing values of the weights corresponding to the shortest paths from each node

to the sink, that is, c∗1 ≤ c∗2 ≤ · · · ≤ c∗N .

From Corollary 1, it follows that the minimization of (2) becomes now a linear programming

(LP) problem:

{R∗
i }N

i=1 = arg min
{Ri}N

i=1

∑
i∈V

Ric
∗
i , (4)
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under constraints (3).

Theorem 2: (LP solution)

The solution of the optimization problem given by (4) under constraints (3) is [9]:

R∗
1 = H(X1),

R∗
2 = H(X2|X1),

. . . . . . . . . (5)

R∗
N = H(XN |XN−1, XN−2, . . . , X1).

Theorem 2 is proven in [10].

Thus, for optimal rate allocation, nodes code by conditioning on all the other nodes that are

closer to the sink on the SPT . In words, the solution of this problem is given by the corner

of the Slepian-Wolf region that intersects the cost function in exactly one point. The node with

the smallest total weight on the SPT to the sink is coded with a rate equal to its unconditional

entropy. Each of the other nodes is coded with a rate equal to its respective entropy conditioned

on all other nodes which have a total smaller weight to the sink than itself.

Figure 4 gives an example involving only two nodes, and it is shown how the cost function is

indeed minimized with such a rate allocation. The assignment (5) corresponds in this particular

case to the point (R1, R2) = (H(X1|X2), H(X2)).

Note that if two or more nodes are equally distanced from the sink on the SPT (e.g.

dSPT (X1, S) = dSPT (X2, S), in Figure 4) then the solution of (5) is not unique, since the

cost function is parallel to one of the faces of the Slepian-Wolf region, so any point on the face

is an optimal solution.

For an illustration of Theorem 2, in Figure 5 we plot the typical rate allocation as a function

of the node index, for a one-dimensional network as in Figure 3 and a Gaussian process as

introduced in Section III-B.1.

Even if the solution can be provided in the closed form (5), a distributed implementation of

the optimal algorithm at each node implies knowledge of the overall structure of the network

(total weights between nodes and total weights from the nodes to the sink). This knowledge is

needed for:

1) Ordering the total weights on the SPT from the nodes to the sink: each node needs its index

in the ordered sequence of nodes in order to determine on which other nodes to condition
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when computing its rate assignment. For instance, it may happen that the distance on the

graph between nodes Xi and Xi−1 is large. Thus, closeness in the ordering on the SPT

does not mean necessarily proximity in distance on the graph.

2) Computation of the rate assignment:

Ri = H(Xi|Xi−1, . . . , X1) = H(X1, . . . , Xi) −H(X1, . . . , Xi−1).

Note that for each node i we need to know locally all distances among the nodes X1, . . . , Xi,

i > 1, in order to be able to compute this rate assignment, because the rate assignment

involves a conditional entropy including all these nodes. However, for a static network,

these distances can be calculated off-line at the deployment of the network, and as a result

the optimal rate allocation can be computed at the beginning of the operation as well.

This implies that, for a distributed algorithm, global knowledge should be available at nodes,

which might not be the case in a practical situation.

However, note that if the correlation decreases with distance, as it is usual in sensor networks,

it is intuitive that each node i could condition only on a small neighborhood, incurring only

a small penalty. In the next section, we propose a fully distributed heuristic approximation

algorithm, which avoids the need for each node to have global knowledge of the network, and

which provides solutions for the rate allocation which are very close to the optimum.

3) Heuristic Approximation Algorithm: So far, we found the optimal solution of the LP

problem for the rate assignment under the Slepian-Wolf constraints. In this section, we consider

the design of a distributed heuristic approximation algorithm for the case of single-sink data

gathering.

Suppose each node i has complete information (distances between nodes and total weights to

the sink) only about a local vicinity N1(i) formed by its immediate neighbors on the connectivity

graph G. All this information can be computed in a distributed manner by running for example

a distributed algorithm for finding the SPT (e.g. Bellman-Ford [5]). By allowing a higher degree

of (local) overhead communication, it is also possible for each node i to learn this information

for a neighborhood Nk(i) of k-hop neighbors. The approximation algorithm we propose is based

on the observation that nodes that are outside this neighborhood count very little, in terms of

rate, in the local entropy conditioning.

This means that data are coded locally at the node with a rate equal to the conditional entropy,
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Algorithm 1 Approximated Slepian-Wolf coding
for each node i do

Set the neighborhood range k (only k-hop neighbors).

Find the SPT using a distributed Bellman-Ford algorithm.

end for

for each node i do

Using local communication, obtain all the information from the neighborhood Nk(i) of

node i.

Find the set Ci of nodes in the neighborhood Nk(i) that are closer to the sink, on the SPT,

than the node i.

Transmit at rate R†
i = H(Xi|Xj, j ∈ Ci).

end for

where the conditioning is performed only on the subset Ci formed by the neighbor nodes which

are closer to the sink than the respective node.

The proposed algorithm needs only local information, so it is completely distributed. For a

given correlation model, depending on the reachable neighborhood range, this algorithm gives

a solution close to the optimum since the neglected conditioning is small in terms of rate for a

correlation function that decays sufficiently fast with the distance.

We present numerical simulations that show the performance of this approximation algorithm,

for the case of single-sink data gathering. We consider the stochastic data model introduced

in Section III-B.1, given by a multi-variate Gaussian random field, and a correlation model

where the inter-node correlation decays exponentially with the distance between the nodes. More

specifically, we use an exponential model of the covariance Kij = exp(−cd2
i,j). The weight of

an edge (i, j) is wi,j = d2
i,j and the total cost is given by expression (4). Figure 6 presents the

average ratio of total costs between the Slepian-Wolf approximated solution using a neighborhood

of N1(i) for each node, and the optimal one. In Figure 7, we show a comparison of our different
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Fig. 6. Slepian-Wolf coding: average value of the ratio between the optimal and the approximated solution, in terms of total

cost, vs. the neighborhood range. Every network instance has 50 nodes uniformly distributed on a square area of size 100×100,

and the correlation exponent varies from c = 0.001 (high correlation) to c = 0.01 (low correlation). The average has been

computed over 20 instances for each (c, radius) value pair.

approaches for the rate allocation, as a function of the distances from the nodes to the sink2.

4) Scaling Laws: A Comparison between Slepian-Wolf Coding and Explicit Communication

Based Coding : The alternative to Slepian-Wolf coding is coding by explicit communication,

which is considered in [12], [14]. In this case, compression at nodes is done only using explicit

communication among nodes, namely, a node can reduce its rate only when data from other nodes

that use it as relay is available (as opposed to Slepian-Wolf coding where no communication

among nodes is required for joint optimal rate allocation). The study of the complexity of joint

rate allocation and transmission structure optimization with explicit communication can be found

in [12], [14].

In this section, we compare the asymptotic behavior (large networks) of the total cost using

Slepian-Wolf coding and the total cost with coding by explicit communication. The advantages

2Note that the slight increase in rate allocation with Slepian-Wolf coding for the furthest nodes from the sink is a boundary

effect, namely nodes that are at the extremity of the square simulation area that we use have a smaller number of close neighbors

on which to condition, as compared to nodes which are located at an intermediate distance from the sink.
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corresponding SPT.

that coding by explicit communication has over Slepian-Wolf coding are (i) no a-priori knowledge

of the correlation structure is needed, and (ii) the compression, which is done by conditional

encoding, is easily performed at the nodes relaying data. However, even for a simple one

dimensional setting presented in this section, our analysis shows that in large networks, for

some cases of correlation models and network scalability, Slepian-Wolf coding can provide very

important gains over coding by explicit communication, in terms of total flow cost.

For the sake of simplicity in the analysis, we consider a one-dimensional network model

where there are N nodes placed uniformly on a line (see Figure 8). The distance between two

consecutive nodes is d. The nodes need to send their correlated data to the sink S.

For this scenario, the SPT is clearly the optimal data gathering structure for both coding

approaches. Thus, the overall optimization problem (2) simplifies, and we can compare the two

different rate allocation strategies in terms of how they influence the total cost.

Within the one-dimensional model, we consider two important cases of network scalability,

namely, the expanding network, where the inter-node distance is kept constant and equal to d = 1

(that is, by increasing N we increase the distance between the node N and the sink S), and the



20

d dd S
X X X X

N N−1

N
H(X )

H(X )

N−1

 H(X  | X   ,X  ,...,X  )

H(X | X  ,X  ,..., X  )

H(X  |X  )

H(X    |X  )
N

N−2 1 2 1 1

N321

Explicit 
Communication

Slepian Wolf

.   .   .   .

.   .   .   .N N−1 2 1
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refinement network, where the total distance from node N to the sink S is kept constant, namely

Nd = 1 (that is, nodes are uniformly placed on a line of length 1, and hence, by adding nodes,

the inter-node distance goes to zero).

As mentioned in Section III-B.1, we consider that the nodes of the network are sampling a

Gaussian continuous-space wide-sense-stationary (WSS) random process Xc(s), where s denotes

the position. Thus, we have a vector of correlated sources X = (X1, . . . , XN) where Xi = Xc(id)

and where the correlation structure for the vector X is inherited from the correlation present in the

original process Xc(s). As N goes to infinity, the set of correlated sources represents a discrete-

space random process denoted by Xd(i), with the index set given by the node positions. Thus

the spatial data vector X measured at the nodes has an N -dimensional multivariate normal

distribution GN(µ,K). In particular, we consider two classes of random processes:

(a) Non-bandlimited processes, namely (a.1): Kij = σ2
ij exp(−c|di,j|), which corresponds

to a regular continuous-space process [23], and (a.2): Kij = σ2
ij exp(−c|di,j|2), which

corresponds to a singular continuous-space process [23], where c > 0.

(b) Bandlimited process with bandwidth B, that is, there exists a continuous angular frequency

such that SXc(Ω) = 0, for |Ω| ≥ Ω0, where SXc(Ω) is the spectral density and B =

2Ω0. This process can also be shown to be a singular continuous-space process3 [23].

Let us denote the conditional entropies by ai = H(Xi|Xi−1, . . . , X1). Note that for any correla-

tion structure, the sequence ai is monotonically decreasing (because conditioning cannot increase

3Actually, it can be shown that the same singularity property holds as long as SXc(Ω) = 0 on some frequency interval of

non-zero measure [23].
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entropy), and is bounded from below by zero (because the entropy cannot be negative). Since the

nodes are equally spaced, and the correlation function of a WSS process is symmetric, it is clear

that H(XI |XI−1, XI−2, . . . , XI−i) = H(XI |XI+1, XI+2, . . . , XI+i), for any I, 0 ≤ i ≤ I − 1.

Let us denote by ψ(N) the ratio between the total cost associated to Slepian-Wolf coding

(costSW (N)) and the total cost corresponding to coding by explicit communication (costEC(N)),

that is:

ψ(N) =
costSW (N)

costEC(N)
=

∑N
i=1 iai∑N

i=1(N − i+ 1)ai

. (6)

Then, the following theorem holds [11]:

Theorem 3: (Scaling Laws)

Asymptotically, we have the following results:

(i) If limi→∞ ai = C > 0,

• limN→∞ ψ(N) = 1,

• costSW (N) = Θ(costEC(N)).

(ii) If limi→∞ ai = 0,

(ii)-1 If ai = Θ(1/ip), p ∈ (0, 1),

• limN→∞ ψ(N) = 1 − p,

• costSW (N) = Θ(costEC(N)).

(ii)-2 If ai = Θ(1/ip), p ≥ 1,

• limN→∞ ψ(N) = 0,

• costSW (N) = o(costEC(N)),

• If p = 1, ψ(N) = Θ(1/ logN),

• If p ∈ (1, 2), ψ(N) = Θ(1/Np−1),

• If p = 2, ψ(N) = Θ(logN/N),

• If p > 2, ψ(N) = Θ(1/N).

The proof of Theorem 3 can be found in [10]. In Figure 9, we show typical behaviors of the

ratio of total flow costs for the two coding approaches.

We apply now Theorem 3 to the correlation models we consider in this work:

• For an expanding network: In cases (a.1) and (a.2), the result of sampling is a discrete-space

regular process [29], thus limi→∞ ai = C > 0, and it follows that limN→∞ ψ(N) = 1. In

case (b), if the spatial sampling period d is smaller than the Nyquist sampling rate 1/B of the
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Fig. 9. Typical behavior of the ratio of the total costs costSW (N)/costEC(N).

corresponding original continuous-space process, then limi→∞ ai = 0. The specific speed of

convergence of ai depends on the spatial sampling period (that is, how small it is with respect

to 1/B) and the specific (bandlimited) power-spectrum density function of the process. In

Figure 10, we show the bandlimited example with correlation K(τ) = Bsinc(Bτ). It can

be seen that when d < 1/B, ai = o(1/i) and thus, the ratio of total costs goes to zero. Also,

the smaller d is, the faster the convergence is.

• For a refinement network: In case (a.1), we show in [10] that H(Xi|Xi−1, . . . , X1) =

H(Xi|Xi−1), thus ai = H(Xi|Xi−1) for any i ≥ 2. Then, for any finite N , aN > 0. Since

iai does not converge to zero (see Figure 11), then it follows from Theorem 3 that in the

limit, the ratio of total costs is limN→∞ ψ(N) = 1. In case (a.2), a closed form expression

for the conditional entropy is difficult to derive. However, we show numerically in Figure

11(a) that in this case ai decreases faster4 than 1/i. For comparison purposes, we show in

Figure 11(a) also the behavior for case (a.1). Thus, from Theorem 3, limN→∞ ψ(N) = 0. In

Figure 11(b), we plot also the ratio of total costs for both correlation models. Finally, in

4Since these two processes are both non-bandlimited, sampling them results in discrete-space regular processes [29]. However,

the sampled model (a.2) inherits a ’superior predictability’ than (a.1), which makes ai decrease faster than 1/i.



23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

Number of nodes on which conditioning is done

i *
 H

(X
i|X

i−
1
,.
..
,X

1
)

d=0.50/B
d=0.60/B
d>1/B

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Network size N

co
st

S
W

(N
)/

co
st

E
C

(N
)

d=0.5/B
d=0.6/B
d>1/B

(b)

Fig. 10. Expanding network sampling a bandlimited process with correlation model given by K(τ) = Bsinc(Bτ): (a)

The conditional entropy H(Xi|Xi−1, . . . , X1) decreases faster than 1/i if d < 1/B; (b) The behavior of the ratio of total

costSW (N)/costEC(N) as a function of the size of the network.

case (b), ai goes to zero very fast, as for the case (a.2), because of the singularity of the

original bandlimited process. It can be seen in Figure 12 how the ratio of costs starts to

decrease as soon as d < 1/B, thus limN→∞ ψ(N) = 0.

Intuitively, similar results to the ones presented in this section hold also for higher dimen-

sions, when the transmission structure that is used is the same (e.g. SPT) for both types of

coding. The ideas leading to the results for the one-dimensional network can be generalized

to two-dimensional networks. For instance, one can consider a two-dimensional wheel structure

with the sink in the center of the wheel, where entropy conditioning at the nodes on any spoke is

done as in the one-dimensional case (see Figure 13). The same analysis as in the one-dimensional

case holds, with the additional twist that, according to Theorem 2, Slepian-Wolf coding at node

i is done by conditioning not only on the nodes closer to the sink on its spoke, but also on

the nodes on the other spokes closer to the sink on the SPT than node i (the dashed circle in

Figure 13). However, the explicit communication coding is still done only on the nodes on the

spoke that forward their data to node i (the solid circle in Figure 13). Thus, the ratio of costs

ψ(N) in the two-dimensional case is upper bounded by its counter-part in the one-dimensional

case, which means that the results of Theorem 3 apply for the two-dimensional case as well.
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Fig. 11. We consider a correlation dependence on the inter-node distance d given by exp(−c|τ |β), β ∈ {1, 2}: (a) The

conditional entropy H(Xi|Xi−1, . . . , X1) decreases faster than 1/i for β = 2, but is constant for β = 1 (after i ≥ 2); (b) The

behavior of the ratio of total costSW (N)/costEC(N) with as a function of the size of the network.
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Fig. 12. Refinement network sampling a bandlimited process; we denote the reference bandwidth with BL = 1/dL: (a) The

conditional entropy H(Xi|Xi−1, . . . , X1) decreases faster than 1/i as soon as B < 1/d, that is, N > 1/dL; (b) The behavior

of the ratio of total costSW (N)/costEC(N) as a function of the size of the network.
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Fig. 13. A two-dimensional network with a wheel structure, with the sink S in the center. Slepian-Wolf coding for node i is

done by conditioning on the nodes in the dashed region (denoted by SW ). Explicit communication coding for node i is done

by conditioning on nodes in the solid region (denoted by EC).

B. Node Placement

Further, we consider the related problem where a given number of nodes N is placed in

a field such that the sensed data can be reconstructed at the sink within specified distortion

bounds while minimizing the energy consumed for communication. For the sake of simplicity,

consider the one-dimensional network in Figure 3, where the nodes can now be placed in arbitrary

position on the line. Denote by wi the distance between node i and node i−1. The optimization

problem considered in this section aims to minimize the total transmission cost under distortion

constraints. Namely, the distortion constraints impose a prescribed accuracy of representation at

the sink for all the points in the network, when only the measurements at the sensor nodes are

available.

Note that for the one-dimensional network in Figure 3 and for a space-dependent correlation

model as considered in this work, the distortion constraints translate into spatial constraints. As-

sume the value at intermediate nodes is approximated by the sensing node corresponding to the

Voronoi cell to which that intermediate node belongs. Then, our optimization becomes:
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{R∗
i , w

∗
i }N

i=1 = arg min
Ri,wi

N∑
i=1

N∑
j=i

Rj × wκ
i (7)

under constraints
N−1∑
i=1

wi +
wN

2
= L, (8)

wi ≤ Wmax, (9)

where (8) is a constraint on the average distortion, and (9) is a constraint on the individual

constraints per Voronoi cell.

For the sake of simplicity, we only consider in this chapter the case where data at nodes is

independent, namely {Ri}N
i=1 = R. A complete analysis of the case when Slepian-Wolf coding

and explicit communication based coding are exploited is provided in [16].

Then the optimal placement {w∗
i }N

i=1 is obtained by solving:

{w∗
i }N

i=1 = arg min
wi

N∑
i=1

(N − i+ 1)wκ
i , (10)

under the distortion constraints (8), (9).

By using Lagrangian optimization with a multiplier λ, we obtain the optimal solution:

wi =

(
λ

κ(N − i+ 1)

) 1
κ−1

, i = 1 . . . N − 1,

wN =

(
3λ

2κ

) 1
κ−1

,

λ =

⎛
⎝ L∑N−1

i=1 ( 1
κ(N−i+1)

)
1

κ−1 + 3
2
( 3

2κ
)

1
κ−1

⎞
⎠

κ−1

.

Such a placement provides important energy performance improvements as compared to

uniform placement (see Figure 14); exploiting data correlation by using Slepian-Wolf coding

further improves the results [16].

C. Lossy Data Gathering

1) Rate-Distortion Allocation: Let us further consider the case when lossy coding is used at

nodes, but with high-resolution [37]. The information measured by the nodes should be available
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Fig. 14. Optimal placement for one-dimensional network, for different path-loss exponents (left); energy improvement over

uniform placement for the two-dimensional network (right), as a function of the number of network nodes.

at the sink within certain total and individual distortion bounds. A rate-distortion allocation

{(Ri, Di)}N
i=1 (bits) has to be assigned at the nodes so that the quantized measured information

samples are described with certain total D and individual Dmax
i , i = 1, . . . , N distortions. Denote

by ST the spanning tree to be found, which defines the transmission structure; ci, i = 1 . . . N are

the total weights of the path from node i to the sink on the spanning tree ST , thus ci =
∑

e∈Ei
wκ

e ,

where e ∈ Ei, and Ei is the set of edges linking node i to the sink S on ST , we is the Euclidean

distance of edge e, and κ is the path-loss exponent; h(·) denotes the differential entropy. Then,

the most general form of our optimization problem is given as follows:

{{R∗
i , D

∗
i , c

∗
i }N

i=1, ST
∗} = arg min

Ri,Di,ci,ST

N∑
i=1

ciRi (11)

under constraints
∑
i∈X

Ri ≥ h(X|V \X ) − log
∏
i∈X

2πeDi,∀X ⊂ V, (12)

N∑
i=1

Di ≤ D, Di ≤ Dmax
i , i = 1 . . . N, (13)

where (12) express the rate-distortion region constraints given in [37], namely that the sum of

rates for any given subset of nodes has to be larger than the entropy of the random variables

measured at those nodes, conditioned on the random variables measured at all other nodes. In

constraints (13), D is the maximum allowed total distortion and Dmax
i , i = 1 . . . N are the
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maximum individual constraints.

In the high rate regime, uniform quantization and Slepian-Wolf coding is optimal [37]. Thus, a

similar result as the one stated in Theorem 1 holds in the lossy case about the separation between

transmission optimization and rate-distortion allocation, since nodes do not need to communicate

explicitly to code data with a given rate-distortion allocation. As a result, the SPT is the optimal

transmission structure in this case as well. Thus, we can prove in the lossy case a result similar

to Theorem 2 which corresponds to the lossless case; namely, for any set of distortion values

{Di}N
i=1, the rate allocation is given by:

Theorem 4: (Optimal rate allocation):

R∗
1 = h(X1) − log 2πeD1,

R∗
2 = h(X2|X1) − log 2πeD2,

. . . (14)

R∗
N = h(XN |XN−1, . . . , X1) − log 2πeDN .

Theorem is proven in 4 in [8].

Next, we consider optimization of (11) for the case where we assume that the constraints

given by (13) are not active. By Theorem 4, {R∗
i }N

i=1 only depends on {Di}N
i=1. Therefore, at

this point, we can insert in (11) the values for {R∗
i }N

i=1 given by Theorem 4, thus obtaining an

optimization problem having as argument the set of distortions {Di}N
i=1 only, that is:

{D∗
i }N

i=1 = arg min
{Di}N

i=1

N∑
i=1

c∗i · (h(Xi|Xi−1, . . . , X1) − log 2πeDi)

under the constraint (15)
N∑

i=1

Di ≤ D.

Note that the differential entropy terms in (15) do not depend on the distortions Di. Thus,

(15) can be equivalently written as:

{D∗
i }N

i=1 = arg max
{Di}N

i=1

N∑
i=1

c∗i log 2πeDi

under the constraint (16)
N∑

i=1

Di ≤ D.
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Denote
∑N

i=1 c
∗
i = C. The solution of the optimization problem (16) is easily obtained, using

Lagrange multipliers, giving a linear distribution of distortions:

D∗
i = D · c

∗
i

C
, i = 1 . . . N. (17)

By combining (14) and (17), we obtain that the rate-distortion allocation at nodes is given by:

R∗
i = h(Xi|Xi−1, . . . , X1) − log

(
2πeDc∗i
C

)
, i = 1 . . . N. (18)

Note that for correlation functions that depend only on the distance among nodes, as we con-

sider in this work, and for an uniform placement of nodes, the differential entropy monotonically

decreases as the number of nodes on which conditioning is done increases. Also, by definition,

the sequence {c∗i }N
i=1 is monotonically increasing with i. As a result, the rate allocation Ri in

(18) is a function that monotonically decreases with the node index i.

Further, (18) essentially depends only on the path weights ordering of the nodes on the SPT ,

given by {c∗i }N
i=1. For example, in the case of correlated Gaussian random fields, (18) can be

written as:

R∗
i = log

det(K(1, . . . i))

det(K(1, . . . , i− 1))

C

c∗i ·D
, i = 1 . . . N, (19)

where K(1, . . . , i) is the correlation matrix corresponding to nodes 1, . . . , i.

In Figure 15, we illustrate the distortion and rate allocations provided by (19) for the one-

dimensional grid with uniform inter-node distances, measuring a correlated Gaussian random field

with β = 1, c = 10−3, N = 20, D = 10−3, Dmax
i = 0.7 · 10−3, and κ = 2 (which corresponds

to sampling a continuous Gauss-Markov process). The same analysis holds for arbitrary two-

dimensional networks. Similar results are obtained for many other network parameter settings,

and in the case of individual distortion constraints [8].

2) Node Placement: In some scenarios, the positions of the nodes are not fixed in advance,

but it is possible to place the nodes optimally so as to minimize various resources [16]. Since the

study in this work is concerned with energy efficient scenarios, one possible task to be achieved

when the node placement can be chosen is the total energy efficiency. Namely, we consider the

optimization (11) where the positions of the nodes are additional variables, and the optimization

is done additionally over the weights of the paths from the nodes to the sink:

{R∗
i , D

∗
i , c

∗
i }N

i=1 = arg min
{Ri,Di,ci}N

i=1

N∑
i=1

ciRi (20)

under the constraints (12), (13),
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Fig. 15. One-dimensional network, average distortion constraint: (a) distortion and (b) rate allocations as a function of the

node index.

with additional constraints on max{ci}N
i=1 (coverage constraint) and on max{ci−ci−1}N

i=2 (inter-

node space constraint). The coverage constraint imposes that the entire area is covered. The

inter-node space constraint ensures that any given point in the measured area is close enough to

a sensor node, such that the data corresponding to that point can be reconstructed with a certain

minimal accuracy at the sink, by approximating it with the value measured by the closest sensor.

We study the problem of optimal placement for two energy efficiency targets of interests,

namely total energy and network lifetime5, and compare the tradeoffs involved. For the one-

dimensional example in Figure 3, the optimal placement is [8]:

w∗
i =

L

(
∑N

j=iR
∗
j )

δ

(∑N
l=1

1

(
∑N

j=l R∗
j )δ

) , i = 1 . . . N,

where {w∗
i }N

i=1 is the distance between nodes i− 1 and i; δ = 1 for total energy minimization,

and δ = 1/2 for lifetime maximization. The optimal joint solution for the placement and rate

allocation is obtained by using an iterative algorithm:

The energy consumption and node positioning resulting from running Algorithm 1 are pre-

sented in Figure 16 (for the case of total energy minimization) and Figure 17 (for the case

of lifetime maximization). A complete study of the node placement problem for efficient lossy

network data gathering is provided in [8].

5We address network lifetime optimization by considering the constraint that all nodes use equal energy.
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Fig. 16. Placement optimization for minimizing the total energy: (a) energy consumption as a function of node index; (b)

distance from sink as a function of node index.
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Fig. 17. Placement for lifetime optimization: (a) energy consumption as a function of node index; (b) distance from sink as a

function of node index.
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Algorithm 2 Placement and rate allocation
Initialize uniformly the node placement {wi}N

i=1 = L/N .

repeat

Given {wi}N
i=1, solve the energy minimization problem for {Rj}N

j=1.

Re-write {wi}N
i=1 as a function of {Rj}N

j=1.

until convergence.

We studied the problem of data gathering from a network of nodes measuring correlated data

to a sink node. We considered an energy related metric, and showed that, in both the cases of

lossless and of lossy coding of the measured information, the optimal transmission structure is

the shortest path tree of the network graph. Further, we determined the optimal rate and distortion

allocations for coding at nodes. Moreover, for the case when the positions of the nodes can be

chosen, we provided strategies for energy-efficient node placement.

Our discussion so far considered the case of spatially correlated but temporally i.i.d. pro-

cesses. In the following section we will discuss the case of processes that are correlated both in

time and in space.

V. DATA GATHERING OF SPATIO-TEMPORAL PROCESSES

In this section, we consider the usual scenario of a sensor network with a sink. The goal of the

sink is now to reconstruct the entire field over space and time, with a certain minimum distortion,

and only based on measurements at the sensors [13]. For this, a fixed number N of nodes are

placed in the field (see Figure 18). Nodes transmit their measurements to the sink, at given time

instants, by using a subset of the links of the graph. The sink needs to reconstruct the whole field

with a minimal total distortion. We consider settings where data is time critical, and thus delay

results in distortion. Such settings include scenarios for fire prevention, or seismic awareness;

extremal settings include sensor networks measuring phenomena where abrupt transitions are

critical (e.g. cracks in a massive structure, or mudslides over a large terrain area). Another class

of relevant scenarios is when sink feedback or control is needed at nodes, and where the effect

of delay in reporting the data induces suboptimal estimation and control.

If the network is dense (large N ), the data has a good spatial approximation. However, for

energy efficiency reasons, nodes in sensor networks cannot transmit their data directly to the
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Fig. 18. In this example, spatio-temporally correlated data from nodes 1, . . . , N need to arrive at sink S. The sink needs to

reconstruct the whole data field using only the measured values X1, . . . , XN . Arbitrary points in the two-dimensional space

are approximated by the measurements of the sensor node corresponding to the Voronoi cell to which they belong. The dashed

zone corresponding to node k represents the area of the field approximated by the value Xk in node k. In thick solid lines, a

chosen transmission structure is shown (here, the shortest path tree SPT). Data from node k reaches the sink after being relayed

by one other sensor node.

sink, but rather communication is usually done via energy efficient transmitting structures. This

implies long delays until the data sent from nodes far from the sink reach the sink, which thus

results in weak temporal approximation.

On the contrary, the opposite effects take place when N is small. Namely, the spatial ap-

proximation of the data is poor, but on the other hand data has to travel over only a limited

number of hops, which results in a good temporal approximation. Thus, as we will show in this

section, for a given spatio-temporal correlation structure, there usually exists a finite optimal N

that minimizes the overall distortion of the field reconstruction at the sink.

A. Problem Setup

We study the influence of node density on the total distortion of estimation, when several

aspects specific to sensor nodes are considered, namely delay and energy efficiency. Our setting

takes into account two important issues typical in sensor networks scenarios: the precision of
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estimation [22], and the energy efficiency [30].

First, since the measured data is correlated and the number of available nodes is limited, the

sink can reconstruct the values of the field at each point by approximating them with the values

at the points where the actual sensor nodes are placed. In those points, full measurements are

available. Also, no other information except the values measured at sensor nodes is available at

the sink about that region of the field. The precision of the approximation depends both on the

level of spatial correlation in the data and on the number of sensors available. This approximation

introduces a first factor of distortion, which we call ’spatial distortion’.

Second, since the nodes have limited battery energy, a good strategy is to send data via relaying

nodes rather than directly to the sink (multi-hopping). However, multi-hopping results in data

delay, since data from the extremities of the network need to be transmitted via multiple relays

until they reach the sink. In various practical sensor network scenarios, data is needed at the

sink in real-time. For instance, for the tasks of control or active monitoring, data may become

useless if it arrives at the sink with too large a delay. For a spatio-temporal correlated process,

the data that arrive at the sink are distorted from the original measured values, however they can

be reconstructed with a certain precision given by the intensity of temporal correlation of the

process. Thus, delay introduces a second factor of distortion, which we call ’time distortion’.

In our study, the two types of distortion are modelled as a single distortion per field point

quantity. Their combined effect results in the total distortion of the field at the sink, and the goal

of this work is to study how this quantity is influenced by the density of nodes of the sensor

network. Namely, we argue that for various typical spatio-temporal correlation models of the

data field, there is a unique optimal value for the number of placed nodes N that minimizes the

total spatio-temporal distortion.

B. One-Dimensional Network

1) Transmission Model: For simplicity of the analysis, in this work we consider networks

with nodes uniformly placed on one- and two-dimensional grids, for which the distortion opti-

mization is done only with respect to the size of the network. In the case of arbitrary networks

with position-dependent correlation structure, the optimization becomes a function of the node

placement as well. In our study, we consider Gaussian random processes which exhibit spatio-

temporal correlation (introduced in Section III-B.2).
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Fig. 19. A one-dimensional example of a data gathering network, where each sensor node covers an area of the whole

network. An instantaneous point of reconstruction is denoted by x. In this example, x belongs to the Voronoi cell of node

N − 2, thus its value at time t is approximated, with a certain distance dependent distortion, by X(xN−2, t).

Consider N nodes placed on a line of fixed length L (see Figure 19). The inter-node distance

is d = L/N . An additional node S at the extreme right of the line represents the sink to which

all data should arrive. The task of the sink is to reconstruct the whole field on the line.

We assume that the quantization done at nodes is very fine, namely we assume the reconstruc-

tion error at the sink is only an estimation error. For that, points on the line that belong to the

space intervals among the N nodes are assigned to Voronoi cells of the sensor nodes; these cells

are delimited by mid-interval points. Therefore, each sensor node covers an interval of length d

around its position. The values of the intermediate points are estimated at the sink by the value

of the corresponding sensor node in the middle of the Voronoi cell6 (see Figure 19 and Figure

20). In this work, we assume that the measurements at nodes have the same variance, and that

the coding rates allocated at nodes are equal. This implies that nodes use equal transmission

energy, and that the spatial distortion per cell does not depend on the node identity. The study

of networks with different rates at nodes is a subject of our current research.

Multi-hopping, as mentioned in Section V-A, inherently introduces delay. The delay has two

causes. On the one hand, if relaying nodes have finite buffers then packet forwarding results in a

certain processing time due to buffering, and thus the delay is proportional to the number of hops

that data needs to travel. On the other hand, if communication edges are lossy channels then this

requires retransmissions of data, and thus the delay is proportional to the number of edges that

6More complex estimation strategies can be designed, in which the field value at an arbitrary position is based on the

measurements of more than a single sensor node [25], [26].
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Fig. 20. The reconstruction at the sink is based on the values measured by the sensing nodes: (a) the original signal ; (b) the

approximation by interpolation at the sink.

data needs to travel. For the sake of simplicity, we assume that the delay is proportional to the

number of hops. Therefore, since the measured process is correlated both in time and in space,

the reconstruction is further distorted from the real-time value due to delay caused by relaying.

2) Point-wise Distortion: For instance, consider the value X(x, t0) of an arbitrary point x on

the line at an arbitrary time t0 (see Figure 21). Assume that the sink approximates the value at

point x by considering the value X(x0, t0), at point x0, placed k hops away from the sink. For

any data packet, we assume that the relation between the time delay tk of that packet and the

number of hops k it has to travel is k = γtk. Assume the delay per hop is a constant T , thus

tk = kT . Then, the mean-square error (MSE) of X(x, t0) at the sink, when X(x0, t0) is known,

is expressed by:

Dx,t0,x0,k = E
[
(X(x, t0) −X(x0, t0 + kT ))2

]
= E

[
X(x, t0)

2
]
+ E

[
X(x0, t0 + kT )2

] − 2E [X(x, t0)X(x0, t0 + kT )]

= 2 − 2σX(x,t0)X(x0,t0+kT )

= 2 − 2σ(|x− x0|, kT )

= 2 − 2e−c((x−x0)2+(γkT )2)
β
2 . (21)

In other words, for any point in time and space, the generalized distance between the approx-

imated and the real value as seen by the sink is
√

(x− x0)2 + (γkT )2, and the corresponding

distortion per field point of point x as seen by the sink is given by 2(1 − σ(|x− x0|, kT )).
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Fig. 21. The value at point x is approximated by the value of the kth sensor node placed at x0, resulting in spatial

distortion. Moreover, due to transmission over k hops, the version that reaches the sink is delayed with kT , which results

in time distortion. The combined result of the two distortion effects is the total distortion Dx(N).

In general, the statistics of the correlated data field might not be known, but they can be

measured on-line, during the network deployment period (for instance, if the correlation is

distance dependent, then nodes can make use of the distance information acquired from the

neighbors for constructing routing tables, for the additional tasks of estimating the correlation

structure and fitting the measurement parameters to a valid correlation model [7]).

3) Total Distortion: We compute now the total distortion of the data estimated by the sink

at a snapshot in time, in MSE sense. Consider node k, which is placed k hops away from

the sink. Denote the position of node k as xk, and the data that node k measures at time

t as X(xk, t). The data sent at time t to the sink about the region [xk − d/2, xk + d/2] is

X(xk, t), but since it is delayed with k clock ticks, this packet actually reaches the sink at time

t + kT (see Figure 21). In fact, at time t, the actual available data at the sink about node k is

X(xk, t − kT ). Thus, the corresponding distortion of reconstruction of the region covered by

node k is:

Dk(N) = 4

∫ xk+ L
2N

x=xk

(1 − σ(x− xk, kT ))dx. (22)

For simplification, we can consider xk = 0 as axis origin for each node k, and then (22)

becomes:

Dk(N) = 4

∫ L
2N

x=0

(1 − σ(x, kT ))dx. (23)

The total distortion D(N) is simply obtained by summing (23) over all nodes k = 0 . . . N−1:
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D(N) =
N−1∑
k=0

4

∫ L
2N

x=0

(1 − σ(x, kT ))dx. (24)

Further, if we insert the correlation model for a Gaussian spatio-temporal process (1), we can

finally write the total distortion of reconstruction of the whole field by the sink, as a function

of N :

D(N) =
N−1∑
k=0

4

∫ L
2N

x=0

(1 − exp(−c(x2 + γ2(kT )2)
β
2 ))dx, (25)

where k counts the number of hops from a node to the sink, T is the time delay per hop, γ

is the time scaling constant, and c is a constant quantifying the intensity of correlation of the

field. The term which is integrated is the distortion incurred by approximating the field between

[− L
2N
, L

2N
], around the node which is at k hops away from the sink, with the value of that node

delayed k time steps.

The expression in (25) cannot be expressed in a closed form. However, an experimental

analysis shows that (25) has always a minimum as a function of N . Moreover, in Section V-B.5,

we will use a strong correlation approximation to derive in a closed-form the optimal value N

for which (25) is minimized. In general, the optimal value of N is obtained by setting δD(N)
N

= 0

and numerically solving for N , by rounding the solution to the closest integer.

Since spatially correlated Gaussian processes can only have certain structures for the corre-

lation dependence on the distance [7], we will restrict our analysis to the models introduced in

Section V-B.2.

4) Optimum N is Finite: In this section we show that for the Gaussian correlation models

introduced in Section V-B.2, there is indeed a finite optimum N0 that minimizes (25). Denote:

an =
n−1∑
k=0

∫ L
2n

x=0

σ(x, kT )dx. (26)

Note that by definition an is lower bounded by 0. Thus, from (24) we can see that a sufficient

condition for the existence of a finite optimum N is that there exists N0 such that for all n > N0,

an is a decreasing sequence.

(i) Correlation model: exp(−c(x2 + γ2(kT )2))

In this case, we can rewrite an as

an =

∫ L
2N

x=0

e−cx2

dx ·
n−1∑
k=0

1

eγ2(kT )2
. (27)
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But limn→∞ an ↘ 0, since the first term in the product converges to zero (the error function)

and the second one can be easily shown to be upper bounded by a finite positive constant. Thus,

for β = 2, the optimum N that minimizes (25) is finite.

(ii) Correlation model: exp(−c√x2 + γ2(kT )2)

This case is difficult to analyze analytically, due to the function that is integrated. However,

our simulations in Section V-D show that in this case too there is a finite optimal N0.

5) Strong Correlation Approximation: We study the case when both L/N and the time scale

γ are small. In other words, data is strongly correlated both spatially and temporally. In this

case, we can make the approximation:

1 − e−c(x2+γ2(kT )2)
β
2 ≈ 1 − (1 − c(x2 + γ2(kT )2)

β
2 )

= c(x2 + γ2(kT )2)
β
2 ,

which simplifies our analysis further.

(i) Correlation model: exp(−c(x2 + γ2(kT )2))

First, we can write: ∫ L
2N

x=0

c(x2 + (γkT )2)dx = c(
L3

24N3
+
L(γkT )2

2N
). (28)

Further, from rewriting (25), it results:

D(N) = c(
L3

2
· 1

N2
+

2L(γT )2

3
·N2 − L(γT )2 ·N +

1

3
L(γT )2).

Now we take the partial derivative of D(N) with respect to N and make it equal to zero. We

obtain that N0 is a solution of the equation:

4N4 − 3N3 − α = 0, (29)

where α = L2

γ2T 2 . For α > 0, (29) has a single positive solution N0.

This gives a good indication of the optimal value of N0 as a function of L2

γ2T 2 ; intuitively, N0

increases with the decrease of the importance of delay in the distortion function, given by the

time scale γ.

Note that, as expected, in the approximation of very strong correlation, the optimal N does

not depend on the value of c (which models the strength of correlation). The optimal value of N

only depends on the ratio between the length of the field L and the time scaling parameter γT ,
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that models the relative importance of delay in the distortion function as compared to spatial

distortion.

(ii) Correlation model: exp(−c√x2 + γ2(kT )2)

In this case, we compute:
∫ L

2N

x=0

c(x2 + (γkT )2)
1
2dx = − c

8N
(−L

√
L2 + 4(γTk)2N2

N2
+ 2(γTk)2 ln(γTk)2N +

+4(γTk)2N ln 2 − 4(γTk)2N ln
L+

√
L2+4(γTk)2N2

N2 N

N
. (30)

When N is large, the second, third and fourth terms in the summation in the paranthesis

cancel each other out, and it can be easily shown that (30) simplifies to
∫ L

2N

x=0

c(x2 + (γkT )2)
1
2dx ≈ cLγTk

4N
. (31)

By summing (31) over k, we can see that the resulting sum is a strictly increasing sequence

in N . This only happens for N large enough to guarantee the strong correlation approximation,

however this is enough to show that the optimum N0 has to be finite.

C. Two-Dimensional Model

1) Total Distortion: The case of a two-dimensional grid network (see Figure 22) is studied

similarly to the one-dimensional model. Consider a square area L× L, on which N2 nodes are

uniformly placed on a square grid. The network is divided into Voronoi cells centered in the

sensor nodes. We count the number of hops from each node to the sink on the most energy-

efficient transmission structure for gathering uncorrelated data, which is the shortest path tree

(SPT). Note that, in general, since data at nodes are spatially correlated, the shortest path tree

is not the most energy-efficient transmission structure if in-network fusion by coding with side

information is performed at nodes; moreover, finding the optimal transmission structure for such

scenarios is NP-hard [12], [9]. Thus, in our analysis, we make the assumption that, due to

limited resources, relay sensor nodes do not perform in-network fusion, namely they do not use

as side information data from other nodes that use them as relay, to reduce the amount of data

themselves need to transmit about their own measurements. In short, data is relayed without

being processed.
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Fig. 22. A two-dimensional square grid. The Voronoi cell partition is drawn is dashed lines, and the shortest path tree (SPT)

is drawn in bold solid lines.

In order to simplify the analysis, we consider a slightly modified setting for the two-dimensional

square grid as compared to the one-dimensional model (see Figure 22). Namely, the modification

from the one-dimensional study is that for the two-dimensional model we assume that the sink

gathers with no delay data in its corresponding Voronoi cell (in other words, the sink itself is

considered as a regular sensor).

We plot in Figure 22 the energy efficient paths from the nodes to the sink. Note that for every

k = 0 . . . N −1 there are 8k cells situated at k hops away from the sink. Therefore, analogously

to the one-dimensional case, we can write the total distortion for the two-dimensional case as:

D(N) =
N−1∑
k=0

4 · 8k
∫ L

2N

x=0

∫ L
2N

y=0

(1 − exp(−c(x2 + y2 + γ2(kT )2)
β
2 ))dydx, (32)

where N is now the number of hops from the sink to the extremity of the square network.
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2) Strong Correlation Approximation: In this section we use an approximation similar to the

one in Section V-B.5, namely

1 − exp(−c(x2 + y2 + γ2(kT )2)
β
2 ) ≈ c(x2 + y2 + γ2(kT )2)

β
2 . (33)

For the sake of simplicity, we analyze only the case β = 2, since the resulting optimization is

easier. Namely, after some straightforward manipulations including taking the partial derivative

of the resulting D(N) with respect to N , we obtain that the optimal N0 is a solution of the

equation:

N5 −N4 − α

3
N +

α

2
= 0. (34)

where α = L2

γ2T 2 . A full analysis of the behavior of this polynomial is outside the scope of this

study. However, by numerical experiments, we are able to provide a set of insights:

• For 0 < α < 83.9, this equation has no real positive solution (namely, it is strictly increasing

and thus its optimum is attained at N0 = 1, which means that in such a case the distortion

caused by delay becomes so important that the optimal solution is to not place any sensor

and let the sink estimate the whole field!)

• For α ≥ 83.9, the equation has two positive real solutions, one (N1 ∈ (1, 2)) corresponding

to a maximum of the function D(N), and the other N2 > 2 to a minimum. For N > N2,

D(N) is strictly increasing. Thus, the optimum solution is either in N0 = 1, or in N2, both

being finite integers.

D. Numerical Simulations

In this section we do not use the approximation of strong correlation, but rather use the rough

total distortion formulae given by (25) and (32).

We use Maple to plot in Figure 23(a) the distortion D(N) for the one-dimensional case, as

expressed in equation (25), as a function of N , for typical values of the constants involved:

c = 0.5 (reasonable correlation decay), γT = 0.1 (the constant scaling the time axis), L = 100,

and β = 2. In Figure 23(b) we illustrate with a similar plot the case when β = 1, with c = 0.05,

γT = 0.05, L = 100. We observe that, in general, there is an optimal N , that depends on the

few constants involved in our model: c, γ, β, L.

Finally, in Figure 24, we plot the distortion D(N) for the two-dimensional case, as expressed

in equation (32), as a function of N , for typical values of the constants involved: c = 0.05,
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Fig. 23. Total estimation distortion of the field at the sink D(N) as a function of the number of nodes N , for a one-dimensional

network: (a) β
2

= 1; (b) β
2

= 0.5.

γT = 0.05, L = 10, and β = 2. We observe that again there is an optimal N minimizing the

total distortion. The ripples in the plots are due to Maple’s graphical interpolation.

E. Remarks

In this section, we studied data gathering of spatio-correlated processes from a correlated data

field to a sink. The task was to perform at the sink the reconstruction of the data measured at

all the points in the field, with maximal accuracy, when the only available information is the

data at the sensor nodes. We defined a single measure of accuracy, that combines the distortions

due to the spatial approximation and to the delay in the network. We showed that, in general,

there is a finite optimal density of sampling the field. Future work includes the analysis of more

complex interpolation strategies and the study of a wider class of random processes.

VI. CONCLUSIONS

We studied the interaction between data representation at nodes, rate allocation, routing and

node placement, for gathering of correlated data in sensor networks. The results of our work

show that a joint consideration of these issues provides important improvements in the overall

data gathering energy efficiency and accuracy of representation.
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Fig. 24. Total estimation distortion of the field at the sink D(N) as a function of the number of nodes N for a two-dimensional

network.

We first analyzed energy efficient data gathering of random spatially correlated processes

with lossless and lossy coding. We successively found the optimal transmission structure and

rate-distortion allocations. Moreover, we considered the problem of energy-efficient optimal node

placement. Further, we considered data gathering of spatio-temporally correlated processes under

delay constraints. Namely, we defined a distortion measure that includes both the effects of spatial

approximation and delay. We showed that, in general, there is an optimal finite density of nodes

that should be placed in the field, for minimizing the total distortion of reconstruction at the

sink.

In all the scenarios, the non-trivial interaction between the structure of the data (or underlying

signal) and the transport mechanism to a central sink has been highlighted. In our view, this is

a central challenge in the design and operation of sensor networks. No simple ’separation’ can

be used, and substantial gains are obtained by a joint analysis and design.
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