158 research outputs found

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Performance studies of evolutionary transfer learning for end-to-end QoT estimation in multi-domain optical networks [Invited]

    Get PDF
    This paper proposes an evolutionary transfer learning approach (Evol-TL) for scalable quality-of-transmission (QoT) estimation in multi-domain elastic optical networks (MD-EONs). Evol-TL exploits a broker-based MD-EON architecture that enables cooperative learning between the broker plane (end-to-end) and domain-level (local) machine learning functions while securing the autonomy of each domain. We designed a genetic algorithm to optimize the neural network architectures and the sets of weights to be transferred between the source and destination tasks. We evaluated the performance of Evol-TL with three case studies considering the QoT estimation task for lightpaths with (i) different path lengths (in terms of the numbers of fiber links traversed), (ii) different modulation formats, and (iii) different device conditions (emulated by introducing different levels of wavelength-specific attenuation to the amplifiers). The results show that the proposed approach can reduce the average amount of required training data by up to 13× while achieving an estimation accuracy above 95%

    Content Defined Optical Network

    Get PDF
    Optical interconnection has become one of the key technologies to adapt the needs of large-scale data center networking with the advantages of large capacity, high bandwidth, and high efficiency. Data center optical interconnection has the characteristics of resource and technology heterogeneity. Its networking and control face enormous challenges for the increasing number of users with a high level quality of service requirements. Around different scenarios, there are a series of key networking and control problems in data center optical interconnection, such as multiple layers and stratums resources optimization in inter-data center, and time-aware resource scheduling in intra-data center. To solve these problems and challenges, this chapter mainly researches on content defined optical networking and integrated control for data center. For networking of vertical “multi-layer-carried” and horizontal “heterogeneous-cross-stratum”, the chapter launches research work around application scenarios about inter-data center optical interconnection with optical network, and intra-data center. The model architecture, implementation mechanism and control strategy are analyzed and demonstrated on the experiment and simulation platform of data center optical interconnection. This chapter will provide important references for future diverse applications of data center optical interconnection and software defined networking and control in practice

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical networks with alien wavelengths

    Get PDF
    In multi-domain elastic optical networks with alien wavelengths, each domain needs to consider intradomain and interdomain alien traffic to estimate and guarantee the required quality of transmission (QoT) for each lightpath and perform provisioning operations. This paper experimentally demonstrates an alien wavelength performance monitoring technique and machine-learning-aided QoT estimation for lightpath provisioning of intradomain/interdomain traffic. Testbed experiments demonstrate modulation format recognition, QoT monitoring, and cognitive routing for a 160 Gbaud alien multi-wavelength lightpath. By using experimental training datasets from the testbed and an artificial neural network, we demonstrated an accurate optical-signal-to-noise ratio prediction with an accuracy of ∼95% when using 1200 data points

    Monitoring and Data Analytics for Optical Networking:Benefits, Architectures, and Use Cases

    Get PDF
    Operators' network management continuously measures network health by collecting data from the deployed network devices; data is used mainly for performance reporting and diagnosing network problems after failures, as well as by human capacity planners to predict future traffic growth. Typically, these network management tools are generally reactive and require significant human effort and skills to operate effectively. As optical networks evolve to fulfil highly flexible connectivity and dynamicity requirements, and supporting ultra-low latency services, they must also provide reliable connectivity and increased network resource efficiency. Therefore, reactive human-based network measurement and management will be a limiting factor in the size and scale of these new networks. Future optical networks must support fully automated management, providing dynamic resource re-optimization to rapidly adapt network resources based on predicted conditions and events; identify service degradation conditions that will eventually impact connectivity and highlight critical devices and links for further inspection; and augment rapid protection schemes if a failure is predicted or detected, and facilitate resource optimization after restoration events. Applying automation techniques to network management requires both the collection of data from a variety of sources at various time frequencies, but it must also support the capability to extract knowledge and derive insight for performance monitoring, troubleshooting, and maintain network service continuity. Innovative analytics algorithms must be developed to derive meaningful input to the entities that orchestrate and control network resources; these control elements must also be capable of proactively programming the underlying optical infrastructure. In this article, we review the emerging requirements for optical network management automation, the capabilities of current optical systems, and the development and standardization status of data models and protocols to facilitate automated network monitoring. Finally, we propose an architecture to provide Monitoring and Data Analytics (MDA) capabilities, we present illustrative control loops for advanced network monitoring use cases, and the findings that validate the usefulness of MDA to provide automated optical network management

    Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical networks with alien wavelengths

    Get PDF
    In multi-domain elastic optical networks with alien wavelengths, each domain needs to consider intradomain and interdomain alien traffic to estimate and guarantee the required quality of transmission (QoT) for each lightpath and perform provisioning operations. This paper experimentally demonstrates an alien wavelength performance monitoring technique and machine-learning-aided QoT estimation for lightpath provisioning of intradomain/interdomain traffic. Testbed experiments demonstrate modulation format recognition, QoT monitoring, and cognitive routing for a 160 Gbaud alien multi-wavelength lightpath. By using experimental training datasets from the testbed and an artificial neural network, we demonstrated an accurate optical-signal-to-noise ratio prediction with an accuracy of ~95% when using 1200 data points.Peer ReviewedPostprint (author's final draft
    corecore