52 research outputs found

    Advances in Microelectronics for Implantable Medical Devices

    Get PDF
    Implantable medical devices provide therapy to treat numerous health conditions as well as monitoring and diagnosis. Over the years, the development of these devices has seen remarkable progress thanks to tremendous advances in microelectronics, electrode technology, packaging and signal processing techniques. Many of today’s implantable devices use wireless technology to supply power and provide communication. There are many challenges when creating an implantable device. Issues such as reliable and fast bidirectional data communication, efficient power delivery to the implantable circuits, low noise and low power for the recording part of the system, and delivery of safe stimulation to avoid tissue and electrode damage are some of the challenges faced by the microelectronics circuit designer. This paper provides a review of advances in microelectronics over the last decade or so for implantable medical devices and systems. The focus is on neural recording and stimulation circuits suitable for fabrication in modern silicon process technologies and biotelemetry methods for power and data transfer, with particular emphasis on methods employing radio frequency inductive coupling. The paper concludes by highlighting some of the issues that will drive future research in the field

    High-performance wireless power and data transfer interface for implantable medical devices

    Get PDF
    D’importants progès ont été réalisés dans le développement des systèmes biomédicaux implantables grâce aux dernières avancées de la microélectronique et des technologies sans fil. Néanmoins, ces appareils restent difficiles à commercialier. Cette situation est due particulièrement à un manque de stratégies de design capable supporter les fonctionnalités exigées, aux limites de miniaturisation, ainsi qu’au manque d’interface sans fil à haut débit fiable et faible puissance capable de connecter les implants et les périphériques externes. Le nombre de sites de stimulation et/ou d’électrodes d’enregistrement retrouvés dans les dernières interfaces cerveau-ordinateur (IMC) ne cesse de croître afin d’augmenter la précision de contrôle, et d’améliorer notre compréhension des fonctions cérébrales. Ce nombre est appelé à atteindre un millier de site à court terme, ce qui exige des débits de données atteingnant facilement les 500 Mbps. Ceci étant dit, ces travaux visent à élaborer de nouvelles stratégies innovantes de conception de dispositifs biomédicaux implantables afin de repousser les limites mentionnées ci-dessus. On présente de nouvelles techniques faible puissance beaucoup plus performantes pour le transfert d’énergie et de données sans fil à haut débit ainsi que l’analyse et la réalisation de ces dernières grâce à des prototypes microélectroniques CMOS. Dans un premier temps, ces travaux exposent notre nouvelle structure multibobine inductive à résonance présentant une puissance sans fil distribuée uniformément pour alimenter des systèmes miniatures d’étude du cerveaux avec des models animaux en ilberté ainsi que des dispositifs médicaux implantbles sans fil qui se caractérisent par une capacité de positionnement libre. La structure propose un lien de résonance multibobines inductive, dont le résonateur principal est constitué d’une multitude de résonateurs identiques disposés dans une matrice de bobines carrées. Ces dernières sont connectées en parallèle afin de réaliser des surfaces de puissance (2D) ainsi qu’une chambre d’alimentation (3D). La chambre proposée utilise deux matrices de résonateurs de base, mises face à face et connectés en parallèle afin d’obtenir une distribution d’énergie uniforme en 3D. Chaque surface comprend neuf bobines superposées, connectées en parallèle et réailsées sur une carte de circuit imprimé deux couches FR4. La chambre dispose d’un mécanisme naturel de localisation de puissance qui facilite sa mise en oeuvre et son fonctionnement. En procédant ainsi, nous évitons la nécessité d’une détection active de l’emplacement de la charge et le contrôle d’alimentation. Notre approche permet à cette surface d’alimentation unique de fournir une efficacité de transfert de puissance (PTE) de 69% et une puissance délivrée à la charge (PDL) de 120 mW, pour une distance de séparation de 4 cm, tandis que le prototype de chambre complet fournit un PTE uniforme de 59% et un PDL de 100 mW en 3D, partout à l’intérieur de la chambre avec un volume de chambre de 27 × 27 × 16 cm3. Une étape critique avant d’utiliser un dispositif implantable chez les humains consiste à vérifier ses fonctionnalités sur des sujets animaux. Par conséquent, la chambre d’énergie sans fil conçue sera utilisée afin de caractériser les performances d’ une interface sans fil de transmisison de données dans un environnement réaliste in vivo avec positionement libre. Un émetteur-récepteur full-duplex (FDT) entièrement intégré qui se caractérise par sa faible puissance est conçu pour réaliser une interfaces bi-directionnelles (stimulation et enregistrement) avec des débits asymétriques: des taux de tramnsmission plus élevés sont nécessaires pour l’enregistrement électrophysiologique multicanal (signaux de liaison montante) alors que les taux moins élevés sont utilisés pour la stimulation (les signaux de liaison descendante). L’émetteur (TX) et le récepteur (RX) se partagent une seule antenne afin de réduire la taille de l’implant. L’émetteur utilise la radio ultra-large bande par impulsions (IR-UWB) basée sur l’approche edge combining et le RX utilise la bande ISM (Industrielle, Scientifique et Médicale) de fréquence central 2.4 GHz et la modulation on-off-keying (OOK). Une bonne isolation (> 20 dB) est obtenue entre le TX et le RX grâce à 1) la mise en forme les impulsions émises dans le spectre UWB non réglementée (3.1-7 GHz), et 2) le filtrage espace-efficace (évitant l’utilisation d’un circulateur ou d’un diplexeur) du spectre du lien de communication descendant directement au niveau de l’ amplificateur à faible bruit (LNA). L’émetteur UWB 3.1-7 GHz utilise un e modultion OOK ainsi qu’une modulation par déplacement de phase (BPSK) à seulement 10.8 pJ / bits. Le FDT proposé permet d’atteindre 500 Mbps de débit de données en lien montant et 100 Mbps de débit de données de lien descendant. Il est entièrement intégré dans un procédé TSMC CMOS 0.18 um standard et possède une taille totale de 0.8 mm2. La consommation totale d’énergie mesurée est de 10.4 mW (5 mW pour RX et 5.4 mW pour TX au taux de 500 Mbps).In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps)

    Advances in Microelectronics for Implantable Medical Devices

    Get PDF

    Wireless power transfer for combined sensing and stimulation in implantable biomedical devices

    Get PDF
    Actuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie.Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source

    WIRELESS POWER MANAGEMENT CIRCUITS FOR BIOMEDICAL IMPLANTABLE SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Wireless tools for neuromodulation

    Get PDF
    Epilepsy is a spectrum of diseases characterized by recurrent seizures. It is estimated that 50 million individuals worldwide are affected and 30% of cases are medically refractory or drug resistant. Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are the only FDA approved device based therapies. Neither therapy offers complete seizure freedom in a majority of users. Novel methodologies are needed to better understand mechanisms and chronic nature of epilepsy. Most tools for neuromodulation in rodents are tethered. The few wireless devices use batteries or are inductively powered. The tether restricts movement, limits behavioral tests, and increases the risk of infection. Batteries are large and heavy with a limited lifetime. Inductive powering suffers from rapid efficiency drops due to alignment mismatches and increased distances. Miniature wireless tools that offer behavioral freedom, data acquisition, and stimulation are needed. This dissertation presents a platform of electrical, optical and radiofrequency (RF) technologies for device based neuromodulation. The platform can be configured with features including: two channels differential recording, one channel electrical stimulation, and one channel optical stimulation. Typical device operation consumes less than 4 mW. The analog front end has a bandwidth of 0.7 Hz - 1 kHz and a gain of 60 dB, and the constant current driver provides biphasic electrical stimulation. For use with optogenetics, the deep brain optical stimulation module provides 27 mW/mm2 of blue light (473 nm) with 21.01 mA. Pairing of stimulating and recording technologies allows closed-loop operation. A wireless powering cage is designed using the resonantly coupled filter energy transfer (RCFET) methodology. RF energy is coupled through magnetic resonance. The cage has a PTE ranging from 1.8-6.28% for a volume of 11 x 11 x 11 in3. This is sufficient to chronically house subjects. The technologies are validated through various in vivo preparations. The tools are designed to study epilepsy, SUDEP, and urinary incontinence but can be configured for other studies. The broad application of these technologies can enable the scientific community to better study chronic diseases and closed-loop therapies

    Harvesting EM Energy to Produce Electrical power

    Get PDF
    The desire to transfer power wirelessly is not a new phenomenon in today’s world. The idea has been driven by the need to diversify the traditional methods of using wires to transfer energy from one point to another. Wireless power transfer also plays a very important role in such a way that electronic devices such as cell phones and laptops could be charged wirelessly. The advancement in technology, the influx of electronic devices and the cost of cables is an alarm to influence the work on wireless power transfer. Wireless power transfer is mostly dependant on the property of magnetic induction. By selecting a specific resonant frequency of an induction circuit, energy can be transferred wirelessly from one circuit to another of the same resonating frequency. The result of this project shows that very little power can be transferred wirelessly using electromagnetic induction. However, improvements can be made to the circuits to obtain better results in the future

    Integrated circuit design for implantable neural interfaces

    Get PDF
    Progress in microfabrication technology has opened the way for new possibilities in neuroscience and medicine. Chronic, biocompatible brain implants with recording and stimulation capabilities provided by embedded electronics have been successfully demonstrated. However, more ambitious applications call for improvements in every aspect of existing implementations. This thesis proposes two prototypes that advance the field in significant ways. The first prototype is a neural recording front-end with spectral selectivity capabilities that implements a design strategy that leads to the lowest reported power consumption as compared to the state of the art. The second one is a bidirectional front-end for closed-loop neuromodulation that accounts for self-interference and impedance mismatch thus enabling simultaneous recording and stimulation. The design process and experimental verification of both prototypes is presented herein

    Low power circuits and systems for wireless neural stimulation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-161).Electrical stimulation of tissues is an increasingly valuable tool for treating a variety of disorders, with applications including cardiac pacemakers, cochlear implants, visual prostheses, deep brain stimulators, spinal cord stimulators, and muscle stimulators. Brain implants for paralysis treatments are increasingly providing sensory feedback via neural stimulation. Within the field of neuroscience, the perturbation of neuronal circuits wirelessly in untethered, freely-behaving animals is of particular importance. In implantable systems, power consumption is often the limiting factor in determining battery or power coil size, cost, and level of tissue heating, with stimulation circuitry typically dominating the power budget of the entire implant. Thus, there is strong motivation to improve the energy efficiency of implantable electrical stimulators. In this thesis, I present two examples of low-power tissue stimulators. The first type is a wireless, low-power neural stimulation system for use in freely behaving animals. The system consists of an external transmitter and a miniature, implantable wireless receiver-and-stimulator utilizing a custom integrated chip built in a standard 0.5 ptm CMOS process. Low power design permits 12 days of continuous experimentation from a 5 mAh battery, extended by an automatic sleep mode that reduces standby power consumption by 2.5x. To test this device, bipolar stimulating electrodes were implanted into the songbird motor nucleus HVC of zebra finches. Single-neuron recordings revealed that wireless stimulation of HVC led to a strong increase of spiking activity in its downstream target, the robust nucleus of the arcopallium (RA). When this device was used to deliver biphasic pulses of current randomly during singing, singing activity was prematurely terminated in all birds tested. The second stimulator I present is a novel, energy-efficient electrode stimulator with feedback current regulation. This stimulator uses inductive storage and recycling of energy based on a dynamic power supply to drive an electrode in an adiabatic fashion such that energy consumption is minimized. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The stimulator also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. The dynamic power supply allows efficient transfer of energy both to and from the electrode, and is based on a DC-DC converter topology that is used in a bidirectional fashion. In an exemplary electrode implementation, I show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard 0.35 pm CMOS process. I also perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. In its current proof-of-concept implementation, this stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply.by Scott Kenneth Arfin.Ph.D
    corecore